Data Engineering Podcast

User Analytics In Depth At Heap with Dan Robinson - Episode 36


Listen Later

Summary

Web and mobile analytics are an important part of any business, and difficult to get right. The most frustrating part is when you realize that you haven’t been tracking a key interaction, having to write custom logic to add that event, and then waiting to collect data. Heap is a platform that automatically tracks every event so that you can retroactively decide which actions are important to your business and easily build reports with or without SQL. In this episode Dan Robinson, CTO of Heap, describes how they have architected their data infrastructure, how they build their tracking agents, and the data virtualization layer that enables users to define their own labels.

Preamble
  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute.
  • For complete visibility into the health of your pipeline, including deployment tracking, and powerful alerting driven by machine-learning, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix performance bottlenecks in no time. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch.
  • Your host is Tobias Macey and today I’m interviewing Dan Robinson about Heap and their approach to collecting, storing, and analyzing large volumes of data
  • Interview
    • Introduction
    • How did you get involved in the area of data management?
    • Can you start by giving a brief overview of Heap?
    • One of your differentiating features is the fact that you capture every interaction on web and mobile platforms for your customers. How do you prevent the user experience from suffering as a result of network congestion, while ensuring the reliable delivery of that data?
    • Can you walk through the lifecycle of a single event from source to destination and the infrastructure components that it traverses to get there?
    • Data collected in a user’s browser can often be messy due to various browser plugins, variations in runtime capabilities, etc. How do you ensure the integrity and accuracy of that information?
      • What are some of the difficulties that you have faced in establishing a representation of events that allows for uniform processing and storage?

      • What is your approach for merging and enriching event data with the information that you retrieve from your supported integrations?

        • What challenges does that pose in your processing architecture?

        • What are some of the problems that you have had to deal with to allow for processing and storing such large volumes of data?

          • How has that architecture changed or evolved over the life of the company?
          • What are some changes that you are anticipating in the near future?

          • Can you describe your approach for synchronizing customer data with their individual Redshift instances and the difficulties that entails?

          • What are some of the most interesting challenges that you have faced while building the technical and business aspects of Heap?

          • What changes have been necessary as a result of GDPR?

          • What are your plans for the future of Heap?

          • Contact Info
            • @danlovesproofs on twitter
            • @drob on github
            • heapanalytics.com / @heap on twitter
            • https://heapanalytics.com/blog/category/engineering?utm_source=rss&utm_medium=rss
            • Parting Question
              • From your perspective, what is the biggest gap in the tooling or technology for data management today?
              • Links
                • Heap
                • Palantir
                • User Analytics
                • Google Analytics
                • Piwik
                • Mixpanel
                • Hubspot
                • Jepsen
                • Chaos Engineering
                • Node.js
                • Kafka
                • Scala
                • Citus
                • React
                • MobX
                • Redshift
                • Heap SQL
                • BigQuery
                • Webhooks
                • Drip
                • Data Virtualization
                • DNS
                • PII
                • SOC2
                • The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

                  Support Data Engineering Podcast

                  ...more
                  View all episodesView all episodes
                  Download on the App Store

                  Data Engineering PodcastBy Tobias Macey

                  • 4.6
                  • 4.6
                  • 4.6
                  • 4.6
                  • 4.6

                  4.6

                  135 ratings


                  More shows like Data Engineering Podcast

                  View all
                  Software Engineering Radio - the podcast for professional software developers by se-radio@computer.org

                  Software Engineering Radio - the podcast for professional software developers

                  272 Listeners

                  The Changelog: Software Development, Open Source by Changelog Media

                  The Changelog: Software Development, Open Source

                  283 Listeners

                  The Cloudcast by Massive Studios

                  The Cloudcast

                  153 Listeners

                  Thoughtworks Technology Podcast by Thoughtworks

                  Thoughtworks Technology Podcast

                  41 Listeners

                  Data Skeptic by Kyle Polich

                  Data Skeptic

                  483 Listeners

                  Talk Python To Me by Michael Kennedy

                  Talk Python To Me

                  592 Listeners

                  Software Engineering Daily by Software Engineering Daily

                  Software Engineering Daily

                  624 Listeners

                  The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

                  The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

                  444 Listeners

                  Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

                  Super Data Science: ML & AI Podcast with Jon Krohn

                  298 Listeners

                  Python Bytes by Michael Kennedy and Brian Okken

                  Python Bytes

                  213 Listeners

                  DataFramed by DataCamp

                  DataFramed

                  266 Listeners

                  Practical AI by Practical AI LLC

                  Practical AI

                  190 Listeners

                  The Stack Overflow Podcast by The Stack Overflow Podcast

                  The Stack Overflow Podcast

                  64 Listeners

                  The Real Python Podcast by Real Python

                  The Real Python Podcast

                  140 Listeners

                  Latent Space: The AI Engineer Podcast by swyx + Alessio

                  Latent Space: The AI Engineer Podcast

                  77 Listeners