The Gradient: Perspectives on AI

Venkatesh Rao: Protocols, Intelligence, and Scaling


Listen Later

“There is this move from generality in a relative sense of ‘we are not as specialized as insects’ to generality in the sense of omnipotent, omniscient, godlike capabilities. And I think there's something very dangerous that happens there, which is you start thinking of the word ‘general’ in completely unhinged ways.”

In episode 114 of The Gradient Podcast, Daniel Bashir speaks to Venkatesh Rao.

Venkatesh is a writer and consultant. He has been writing the widely read Ribbonfarm blog since 2007, and more recently, the popular Ribbonfarm Studio Substack newsletter. He is the author of Tempo, a book on timing and decision-making, and is currently working on his second book, on the foundations of temporality. He has been an independent consultant since 2011, supporting senior executives in the technology industry. His work in recent years has focused on AI, semiconductor, sustainability, and protocol technology sectors. He holds a PhD in control theory (2003) from the University of Michigan. He is currently based in the Seattle area, and enjoys dabbling in robotics in his spare time. You can learn more about his work at venkateshrao.com

Have suggestions for future podcast guests (or other feedback)? Let us know here or reach us at [email protected]

Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (01:38) Origins of Ribbonfarm and Venkat’s academic background

* (04:23) Voice and recurring themes in Venkat’s work

* (11:45) Patch models and multi-agent systems: integrating philosophy of language, balancing realism with tractability

* (21:00) More on abstractions vs. tractability in Venkat’s work

* (29:07) Scaling of industrial value systems, characterizing AI as a discipline

* (39:25) Emergent science, intelligence and abstractions, presuppositions in science, generality and universality, cameras and engines

* (55:05) Psychometric terms

* (1:09:07) Inductive biases (yes I mentioned the No Free Lunch Theorem and then just talked about the definition of inductive bias and not the actual theorem 🤡)

* (1:18:13) LLM training and efficiency, comparing LLMs to humans

* (1:23:35) Experiential age, analogies for knowledge transfer

* (1:30:50) More clarification on the analogy

* (1:37:20) Massed Muddler Intelligence and protocols

* (1:38:40) Introducing protocols and the Summer of protocols

* (1:49:15) Evolution of protocols, hardness

* (1:54:20) LLMs, protocols, time, future visions, and progress

* (2:01:33) Protocols, drifting from value systems, friction, compiling explicit knowledge

* (2:14:23) Directions for ML people in protocols research

* (2:18:05) Outro

Links:

* Venkat’s Twitter and homepage

* Mediocre Computing

* Summer of Protocols and 2024 Call for Applications (apply!)

* Essays discussed

* Patch models and their applications to multivehicle command and control

* From Mediocre Computing

* Text is All You Need

* Magic, Mundanity, and Deep Protocolization

* A Camera, Not an Engine

* Massed Muddler Intelligence

* On protocols

* The Unreasonable Sufficiency of Protocols

* Protocols Don’t Build Pyramids

* Protocols in (Emergency) Time

* Atoms, Institutions, Blockchains



Get full access to The Gradient at thegradientpub.substack.com/subscribe
...more
View all episodesView all episodes
Download on the App Store

The Gradient: Perspectives on AIBy Daniel Bashir

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

47 ratings


More shows like The Gradient: Perspectives on AI

View all
The Gray Area with Sean Illing by Vox

The Gray Area with Sean Illing

10,685 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Practical AI by Practical AI LLC

Practical AI

190 Listeners

Thoughts on the Market by Morgan Stanley

Thoughts on the Market

1,261 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

195 Listeners

Last Week in AI by Skynet Today

Last Week in AI

288 Listeners

All-In with Chamath, Jason, Sacks & Friedberg by All-In Podcast, LLC

All-In with Chamath, Jason, Sacks & Friedberg

9,050 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

88 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

386 Listeners

Hard Fork by The New York Times

Hard Fork

5,422 Listeners

Raising Health by Andreessen Horowitz, a16z Bio + Health

Raising Health

146 Listeners

The Ezra Klein Show by New York Times Opinion

The Ezra Klein Show

15,220 Listeners

Unexplainable by Vox

Unexplainable

2,182 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

76 Listeners

The Ben & Marc Show by Marc Andreessen, Ben Horowitz

The Ben & Marc Show

134 Listeners