
Sign up to save your podcasts
Or


This work revisits LSTMs and GRUs, introducing minimal versions that eliminate hidden state dependencies, enabling efficient parallel training while matching the performance of recent sequence models.
https://arxiv.org/abs//2410.01201
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This work revisits LSTMs and GRUs, introducing minimal versions that eliminate hidden state dependencies, enabling efficient parallel training while matching the performance of recent sequence models.
https://arxiv.org/abs//2410.01201
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

960 Listeners

1,930 Listeners

432 Listeners

112,200 Listeners

9,942 Listeners

5,512 Listeners

211 Listeners

49 Listeners

93 Listeners

466 Listeners