
Sign up to save your podcasts
Or


In this episode of Tech Talks Daily, I'm joined by Josh Haas, co-founder and co-CEO of Bubble, to unpack why the next phase of software creation is already taking shape. We talk about how the early excitement around AI-powered code generation delivered fast demos and instant gratification, but often fell apart when teams tried to turn those experiments into durable products that could grow with a business.
Josh takes us back to Bubble's origins in 2012, long before AI hype cycles and trend-driven development. At the time, the idea was simple but ambitious: give more people the ability to build genuine software without spending months learning traditional programming. That early focus on visual development now feels timely again, especially as builders wrestle with the limits of black-box AI tools that hide logic until something breaks.
We spend time on where vibe coding struggles in practice. Josh explains why speed alone is never enough once customers, payments, and sensitive data are involved. As he explains, most product requirements only surface after users arrive, and those edge cases are exactly where opaque AI-generated code can become risky. If you cannot see how your system works, you cannot truly own it, secure it, or fix it when something goes wrong.
The conversation also digs into Bubble's hybrid approach, blending AI agents with visual development. Rather than asking builders to trust an AI, Bubble's model unquestioningly emphasizes clarity, auditability, and shared responsibility between humans and machines. Josh explains how visual logic makes software behavior explicit, helping teams understand rules, permissions, and workflows before they cause real-world problems.
I learn how this mindset has helped Bubble-powered apps process over $1.1 billion in payments every year, a level of scale that leaves no room for guesswork.
We also explore Bubble AI Agent, where conversational AI meets visual editing, and why transparency and control matter more than flashy demos. From governance and rollback logs to builder accountability, this episode looks at what it actually takes to build software that survives beyond the first launch.
If you are building with AI or thinking about how software development is changing, this episode offers a grounded perspective on what comes after the hype fades. As AI tools become more powerful, the real question is whether they help you understand your product better over time, or slowly disconnect you from it.
Which path should builders choose right now?
Useful Links
Thanks to our sponsors, Alcor, for supporting the show.
By Neil C. Hughes5
200200 ratings
In this episode of Tech Talks Daily, I'm joined by Josh Haas, co-founder and co-CEO of Bubble, to unpack why the next phase of software creation is already taking shape. We talk about how the early excitement around AI-powered code generation delivered fast demos and instant gratification, but often fell apart when teams tried to turn those experiments into durable products that could grow with a business.
Josh takes us back to Bubble's origins in 2012, long before AI hype cycles and trend-driven development. At the time, the idea was simple but ambitious: give more people the ability to build genuine software without spending months learning traditional programming. That early focus on visual development now feels timely again, especially as builders wrestle with the limits of black-box AI tools that hide logic until something breaks.
We spend time on where vibe coding struggles in practice. Josh explains why speed alone is never enough once customers, payments, and sensitive data are involved. As he explains, most product requirements only surface after users arrive, and those edge cases are exactly where opaque AI-generated code can become risky. If you cannot see how your system works, you cannot truly own it, secure it, or fix it when something goes wrong.
The conversation also digs into Bubble's hybrid approach, blending AI agents with visual development. Rather than asking builders to trust an AI, Bubble's model unquestioningly emphasizes clarity, auditability, and shared responsibility between humans and machines. Josh explains how visual logic makes software behavior explicit, helping teams understand rules, permissions, and workflows before they cause real-world problems.
I learn how this mindset has helped Bubble-powered apps process over $1.1 billion in payments every year, a level of scale that leaves no room for guesswork.
We also explore Bubble AI Agent, where conversational AI meets visual editing, and why transparency and control matter more than flashy demos. From governance and rollback logs to builder accountability, this episode looks at what it actually takes to build software that survives beyond the first launch.
If you are building with AI or thinking about how software development is changing, this episode offers a grounded perspective on what comes after the hype fades. As AI tools become more powerful, the real question is whether they help you understand your product better over time, or slowly disconnect you from it.
Which path should builders choose right now?
Useful Links
Thanks to our sponsors, Alcor, for supporting the show.

1,294 Listeners

534 Listeners

1,652 Listeners

1,101 Listeners

624 Listeners

1,031 Listeners

300 Listeners

347 Listeners

225 Listeners

210 Listeners

513 Listeners

138 Listeners

357 Listeners

64 Listeners

649 Listeners

1 Listeners

0 Listeners

0 Listeners

0 Listeners

0 Listeners

0 Listeners

0 Listeners