Streaming Audio: Apache Kafka® & Real-Time Data

Why Data Mesh? ft. Ben Stopford


Listen Later

With experience in data infrastructure and distributed data technologies, author of the book “Designing Event-Driven Systems” Ben Stopford (Lead Technologist, Office of the CTO, Confluent) explains the data mesh paradigm, differences between traditional data warehouses and microservices, as well as how you can get started with data mesh.   

Unlike standard data architecture, data mesh is about moving data away from a monolithic data warehouse into distributed data systems. Doing so will allow data to be available as a product—this is also one of the four principles of data mesh: 

  1. Data ownership by domain
  2. Data as a product
  3. Data available everywhere for self-service
  4. Data governed wherever it is

These four principles are technology agnostic, which means that they don’t restrict you to a programming language, Apache Kafka®, or other databases. Data mesh is all about building point-to-point architecture that lets you evolve and accommodate real-time data needs with governance tools.

Fundamentally, data mesh is more than a technological shift. It’s a mindset shift that requires cultural adaptation of product thinking—treating data as a product instead of data as an asset or resource. Data mesh invests ownership of data by the people who create it with requirements that ensure quality and governance. Because data mesh consists of a map of interconnections, it’s important to have governance tools in place to identify data sources and provide data discovery capabilities. 

There are many ways to implement data mesh, event streaming being one of them. You can ingest data sets from across organizations and sources into your own data system. Then you can use stream processing to trigger an application response to the data set. By representing each data product as a data stream, you can tag it with sub-elements and secondary dimensions to enable data searchability. If you are using a managed service like Confluent Cloud for data mesh, you can visualize how data flows inside the mesh through a stream lineage graph. 

Ben also discusses the importance of keeping data architecture as simple as you can to avoid derivatives of data products.

EPISODE LINKS

  • Data Mesh 101 course
  • Data Mesh 101 with Live Walkthrough Exercise
  • Introduction and Guide to Data Mesh
  • The Definitive Guide to Building a Data Mesh with Event Streams
  • What is Data Mesh, and How Does it Work? ft. Zhamak Dehghani
  • Designing Event-Driven Systems
  • Watch the video version of this podcast
  • Join the Confluent Community
  • Learn more with Kafka tutorials, resources, and guides at Confluent Developer
  • Live demo: Intro to Event-Driven Microservices with Confluent
  • Use PODCAST100 to get an additional $100 of free Confluent Cloud usage (details)
...more
View all episodesView all episodes
Download on the App Store

Streaming Audio: Apache Kafka® & Real-Time DataBy Confluent, founded by the original creators of Apache Kafka®

  • 4.8
  • 4.8
  • 4.8
  • 4.8
  • 4.8

4.8

44 ratings


More shows like Streaming Audio: Apache Kafka® & Real-Time Data

View all
Planet Money by NPR

Planet Money

30,892 Listeners

The Changelog: Software Development, Open Source by Changelog Media

The Changelog: Software Development, Open Source

285 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

586 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

631 Listeners

AWS Podcast by Amazon Web Services

AWS Podcast

201 Listeners

DataFramed by DataCamp

DataFramed

268 Listeners

Tech Lead Journal by Henry Suryawirawan

Tech Lead Journal

12 Listeners

System Design by Wes and Kevin

System Design

93 Listeners

Postgres FM by Nikolay Samokhvalov and Michael Christofides

Postgres FM

20 Listeners

Kubernetes for Humans by Komodor

Kubernetes for Humans

2 Listeners

Learn System Design by Ben Kitchell

Learn System Design

32 Listeners