
Sign up to save your podcasts
Or
In this episode, Yann LeCun, a renowned computer scientist and AI researcher, shares his insights on the limitations of large language models and how his new joint embedding predictive architecture could help bridge the gap. While large language models have made remarkable strides in natural language processing and understanding, they are still far from perfect. Yann LeCun points out that these models often cannot capture the nuances and complexities of language, leading to inaccuracies and errors. To address this gap, Yann LeCun introduces his new joint embedding predictive architecture - a novel approach to language modelling that combines techniques from computer vision and natural language processing. This approach involves jointly embedding text and images, allowing for more accurate predictions and a better understanding of the relationships between original concepts and objects. Craig Smith Twitter: https://twitter.com/craigssEye on A.I. Twitter: https://twitter.com/EyeOn_AI
4.8
6161 ratings
In this episode, Yann LeCun, a renowned computer scientist and AI researcher, shares his insights on the limitations of large language models and how his new joint embedding predictive architecture could help bridge the gap. While large language models have made remarkable strides in natural language processing and understanding, they are still far from perfect. Yann LeCun points out that these models often cannot capture the nuances and complexities of language, leading to inaccuracies and errors. To address this gap, Yann LeCun introduces his new joint embedding predictive architecture - a novel approach to language modelling that combines techniques from computer vision and natural language processing. This approach involves jointly embedding text and images, allowing for more accurate predictions and a better understanding of the relationships between original concepts and objects. Craig Smith Twitter: https://twitter.com/craigssEye on A.I. Twitter: https://twitter.com/EyeOn_AI
159 Listeners
1,043 Listeners
476 Listeners
435 Listeners
298 Listeners
340 Listeners
151 Listeners
183 Listeners
298 Listeners
91 Listeners
105 Listeners
128 Listeners
143 Listeners
201 Listeners
496 Listeners