Experiencing Data w/ Brian T. O’Neill  (UX for AI Data Products, SAAS Analytics, Data Product Management)

019 - The Non-Technical (Human!) Challenges that Can Impede Great Data Science Solutions


Listen Later

Dr. Bob Hayes, will be the first to tell you that he’s a dataphile. Ever since he took a stats course in college in the 80s, Bob’s been hooked on data. Currently, Bob is the Research and Analytics Director at Indigo Slate. He’s also the president of Business over Broadway, a consultancy he founded in 2007.In a past life, Bob served as Chief Research Officer at Appuri and AnalyticsWeek, Chief Customer Officer at TCELab, and a contributing analyst at Gleanster, among many other roles.
In today’s episode, Bob and I discuss a recent Kaggle survey that highlighted several key non-technical impediments to effective data science projects. In addition to outlining what those challenges are and exploring potential solutions to them, we also covered:
The three key skills successful data science teams have
Why improving customer loyalty involves analyzing several metrics, not just one
Why Bob feels the scientific method is just as important today as it’s been for hundreds of years
The importance of repeatable results
How prototyping early can save time and drive adoption of data science projects
Bob’s advice on how to move data science projects forward (and one key skill he feels most business leaders lack)
The role of the analytics translator
Resources and Links:
Dr. Bob Hayes on LinkedIn
Seeing Theory
Calling Bullshit
Doctor Bob Hayes on Twitter
Business Over Broadway
IndigoSlate
Quotes from Today’s Episode
“I’ve always loved data. I took my first stats course in college over 30 years ago and I was hooked immediately. I love data. Sometimes I introduce myself as a dataholic. I love it.” — Bob
“I’m a big fan of just kind of analyzing data, just getting my hands on data, just exploring it. But that can lead you down a path of no return where you’re just analyzing data just to analyze it. What I try to tell my clients is that when you approach a data set, have a problem that you’re trying to solve. The challenge there I think it stems from the fact that a lot of data science teams don’t have a subject matter expert on the team to pose the right questions.” — Bob
“The three findings that I found pretty interesting were, number one, a lack of a clear question to be answering or a clear direction to go in with the available data. The second one was that data science results were not used by the business decision makers. And the third one was an inability to integrate findings into the organization’s decision making processes.” — Brian
“It makes you wonder,‘if you didn’t have a good problem to solve, maybe that’s why [the findings] didn’t get used in the first place.’” — Brian
“That part isn’t so much the math and the science. That’s more the psychology and knowing how people react. Because you’re going to have certain business stakeholders that still want to kind of shoot from the hip and their experience. Their gut tells them something. And sometimes that gut is really informed.” — Brian
“If executives are looking at data science and AI as a strategic initiative, it seems really funny to me that someone wouldn’t be saying, ‘What do we get out of this? What are the next steps?’ when the data teams get to the end of a project and just moves on to the next one.” — Brian
...more
View all episodesView all episodes
Download on the App Store

Experiencing Data w/ Brian T. O’Neill  (UX for AI Data Products, SAAS Analytics, Data Product Management)By Brian T. O’Neill from Designing for Analytics

  • 5
  • 5
  • 5
  • 5
  • 5

5

39 ratings


More shows like Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

View all
Software Engineering Radio - the podcast for professional software developers by se-radio@computer.org

Software Engineering Radio - the podcast for professional software developers

262 Listeners

HBR IdeaCast by Harvard Business Review

HBR IdeaCast

257 Listeners

a16z Podcast by Andreessen Horowitz

a16z Podcast

997 Listeners

Data Skeptic by Kyle Polich

Data Skeptic

474 Listeners

UI Breakfast: UI/UX Design and Product Strategy by Jane Portman

UI Breakfast: UI/UX Design and Product Strategy

134 Listeners

Acquired by Ben Gilbert and David Rosenthal

Acquired

3,659 Listeners

Odd Lots by Bloomberg

Odd Lots

1,733 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

429 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

295 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

143 Listeners

Masters of Scale by WaitWhat

Masters of Scale

3,968 Listeners

DataFramed by DataCamp

DataFramed

267 Listeners

Practical AI by Practical AI LLC

Practical AI

196 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

90 Listeners

Product Thinking by Melissa Perri

Product Thinking

144 Listeners