
Sign up to save your podcasts
Or


First aired on January 17, 2018. If someone mentions quantum computing, and you find yourself outwardly nodding your head, but secretly shaking it, you’re in good company: some of the world’s smartest people admit they don’t really understand it either. Fortunately, some of the world’s other smartest people, like Dr. Krysta Svore, Principal Research Manager of the Microsoft Quantum – or QuArC – group at Microsoft Research in Redmond, actually DO understand quantum computing, and are working hard to make it a reality.
Today, Dr. Svore shares her passion for quantum algorithms and their potential to solve some of the world’s biggest problems, explains why Microsoft’s topological quantum bit – or qubit – is a game changer for quantum computing, and assures us that, although qubits live in dilution refrigerators at temperatures near absolute zero, quantum researchers can still sit in the comfort of their offices and work with the computer programmer’s equivalent of Schroedinger’s Cat.
By Researchers across the Microsoft research community4.8
8080 ratings
First aired on January 17, 2018. If someone mentions quantum computing, and you find yourself outwardly nodding your head, but secretly shaking it, you’re in good company: some of the world’s smartest people admit they don’t really understand it either. Fortunately, some of the world’s other smartest people, like Dr. Krysta Svore, Principal Research Manager of the Microsoft Quantum – or QuArC – group at Microsoft Research in Redmond, actually DO understand quantum computing, and are working hard to make it a reality.
Today, Dr. Svore shares her passion for quantum algorithms and their potential to solve some of the world’s biggest problems, explains why Microsoft’s topological quantum bit – or qubit – is a game changer for quantum computing, and assures us that, although qubits live in dilution refrigerators at temperatures near absolute zero, quantum researchers can still sit in the comfort of their offices and work with the computer programmer’s equivalent of Schroedinger’s Cat.

341 Listeners

155 Listeners

213 Listeners

306 Listeners

90 Listeners

505 Listeners

477 Listeners

58 Listeners

133 Listeners

95 Listeners

124 Listeners

589 Listeners

26 Listeners

35 Listeners

136 Listeners