Machine Learning Street Talk (MLST)

#037 - Tour De Bayesian with Connor Tann


Listen Later

Connor Tan is a physicist and senior data scientist working for a multinational energy company where he co-founded and leads a data science team. He holds a first-class degree in experimental and theoretical physics from Cambridge university. With a master's in particle astrophysics. He specializes in the application of machine learning models and Bayesian methods. Today we explore the history, pratical utility, and unique capabilities of Bayesian methods. We also discuss the computational difficulties inherent in Bayesian methods along with modern methods for approximate solutions such as Markov Chain Monte Carlo. Finally, we discuss how Bayesian optimization in the context of automl may one day put Data Scientists like Connor out of work.


Panel: Dr. Keith Duggar, Alex Stenlake, Dr. Tim Scarfe


00:00:00 Duggars philisophical ramblings on Bayesianism

00:05:10 Introduction

00:07:30 small datasets and prior scientific knowledge

00:10:37 Bayesian methods are probability theory

00:14:00 Bayesian methods demand hard computations

00:15:46 uncertainty can matter more than estimators

00:19:29 updating or combining knowledge is a key feature

00:25:39 Frequency or Reasonable Expectation as the Primary Concept 

00:30:02 Gambling and coin flips

00:37:32 Rev. Thomas Bayes's pool table

00:40:37 ignorance priors are beautiful yet hard

00:43:49 connections between common distributions

00:49:13 A curious Universe, Benford's Law

00:55:17 choosing priors, a tale of two factories

01:02:19 integration, the computational Achilles heel

01:35:25 Bayesian social context in the ML community

01:10:24 frequentist methods as a first approximation

01:13:13 driven to Bayesian methods by small sample size

01:18:46 Bayesian optimization with automl, a job killer?

01:25:28 different approaches to hyper-parameter optimization

01:30:18 advice for aspiring Bayesians

01:33:59 who would connor interview next?


Connor Tann: https://www.linkedin.com/in/connor-tann-a92906a1/

https://twitter.com/connossor

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

84 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

481 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

443 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

296 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

324 Listeners

Machine Learning Guide by OCDevel

Machine Learning Guide

765 Listeners

Practical AI by Practical AI LLC

Practical AI

189 Listeners

ManifoldOne by Steve Hsu

ManifoldOne

87 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

197 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

375 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

122 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

199 Listeners

Unsupervised Learning by by Redpoint Ventures

Unsupervised Learning

39 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

77 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

450 Listeners

Training Data by Sequoia Capital

Training Data

40 Listeners