
Sign up to save your podcasts
Or


If every question in life could be answered by choosing from just a few options, machine learning would be pretty simple, and life for machine learning researchers would be pretty sweet. Unfortunately, in both life and machine learning, things are a bit more complicated. That’s why Dr. Manik Varma, Principal Researcher at MSR India, is developing extreme classification systems to answer multiple-choice questions that have millions of possible options and help people find what they are looking for online more quickly, more accurately and less expensively.
On today’s podcast, Dr. Varma tells us all about extreme classification (including where in the world you might actually run into 10 or 100 million options), reveals how his Parabel and Slice algorithms are making high quality recommendations in milliseconds, and proves, with both his life and his work, that being blind need not be a barrier to extreme accomplishment.
By Researchers across the Microsoft research community4.8
8080 ratings
If every question in life could be answered by choosing from just a few options, machine learning would be pretty simple, and life for machine learning researchers would be pretty sweet. Unfortunately, in both life and machine learning, things are a bit more complicated. That’s why Dr. Manik Varma, Principal Researcher at MSR India, is developing extreme classification systems to answer multiple-choice questions that have millions of possible options and help people find what they are looking for online more quickly, more accurately and less expensively.
On today’s podcast, Dr. Varma tells us all about extreme classification (including where in the world you might actually run into 10 or 100 million options), reveals how his Parabel and Slice algorithms are making high quality recommendations in milliseconds, and proves, with both his life and his work, that being blind need not be a barrier to extreme accomplishment.

341 Listeners

155 Listeners

213 Listeners

306 Listeners

90 Listeners

505 Listeners

478 Listeners

56 Listeners

133 Listeners

95 Listeners

124 Listeners

589 Listeners

26 Listeners

35 Listeners

136 Listeners