
Sign up to save your podcasts
Or
Professor Xinyan Huang from Hong Kong Polytechnic University shares his expertise on battery fires and the various experimental methods researchers use to trigger thermal runaway events under controlled conditions.
• Terminology matters - "thermal runaway" more accurately describes battery failure than "ignition" as the critical reactions occur inside the cell
• Nail penetration testing is widely used but contains surprising complexities, including nail material, penetration depth, velocity and battery orientation
• Mechanical abuse tests (crushing, dropping, squeezing) simulate real-world accidents but often lack repeatability
• Thermal abuse via heating typically targets 200°C surface temperature using methods including flame exposure, electrical coils, and laser heating
• Electrical abuse through overcharging (150-200% SOC) significantly increases risk, while poor-quality charging equipment creates additional hazards
• State of charge plays a crucial role in how batteries respond to abuse tests
• New research aims to bridge the gap between micro-scale material testing and cell-level testing
Professor Huang is organising the 4th International Symposium on Lithium Battery Fire Safety (ISLBFS 2025) in Hong Kong from October 30th to November 2nd - the largest battery fire safety conference in the world.
I intended to link Xinyan's papers on batteries, but there is 19 of them!?! Let me link the most recent ones:
Cover image source: https://doi.org/10.1016/j.est.2024.111337
----
The Fire Science Show is produced by the Fire Science Media in collaboration with OFR Consultants. Thank you to the podcast sponsor for their continuous support towards our mission.
4.8
1616 ratings
Professor Xinyan Huang from Hong Kong Polytechnic University shares his expertise on battery fires and the various experimental methods researchers use to trigger thermal runaway events under controlled conditions.
• Terminology matters - "thermal runaway" more accurately describes battery failure than "ignition" as the critical reactions occur inside the cell
• Nail penetration testing is widely used but contains surprising complexities, including nail material, penetration depth, velocity and battery orientation
• Mechanical abuse tests (crushing, dropping, squeezing) simulate real-world accidents but often lack repeatability
• Thermal abuse via heating typically targets 200°C surface temperature using methods including flame exposure, electrical coils, and laser heating
• Electrical abuse through overcharging (150-200% SOC) significantly increases risk, while poor-quality charging equipment creates additional hazards
• State of charge plays a crucial role in how batteries respond to abuse tests
• New research aims to bridge the gap between micro-scale material testing and cell-level testing
Professor Huang is organising the 4th International Symposium on Lithium Battery Fire Safety (ISLBFS 2025) in Hong Kong from October 30th to November 2nd - the largest battery fire safety conference in the world.
I intended to link Xinyan's papers on batteries, but there is 19 of them!?! Let me link the most recent ones:
Cover image source: https://doi.org/10.1016/j.est.2024.111337
----
The Fire Science Show is produced by the Fire Science Media in collaboration with OFR Consultants. Thank you to the podcast sponsor for their continuous support towards our mission.
412 Listeners
43,846 Listeners
90,686 Listeners
55 Listeners
2,087 Listeners
32,106 Listeners
26,185 Listeners
152 Listeners
11,797 Listeners
298 Listeners
2,153 Listeners
5,059 Listeners
774 Listeners
5,455 Listeners
1,252 Listeners