
Sign up to save your podcasts
Or


How is an outlier in the data like obscenity? A case could be made that they're both the sort of thing where we know it when we see it, but that can be awfully tricky to perfectly define and detect. Visualize many data sets, and some of the data points are obvious outliers, but just as many (or more) fall in a gray area—especially if they're sneaky inliers. z-score, MAD, modified z-score, interquartile range (IQR), time-series decomposition, smoothing, forecasting, and many other techniques are available to the analyst for detecting outliers. Depending on the data, though, the most appropriate method (or combination of methods) for identifying outliers can change! We sat down with Brett Kennedy, author of Outlier Detection in Python, to dig into the topic! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.
By Michael Helbling, Moe Kiss, Tim Wilson, Val Kroll, and Julie Hoyer4.8
166166 ratings
How is an outlier in the data like obscenity? A case could be made that they're both the sort of thing where we know it when we see it, but that can be awfully tricky to perfectly define and detect. Visualize many data sets, and some of the data points are obvious outliers, but just as many (or more) fall in a gray area—especially if they're sneaky inliers. z-score, MAD, modified z-score, interquartile range (IQR), time-series decomposition, smoothing, forecasting, and many other techniques are available to the analyst for detecting outliers. Depending on the data, though, the most appropriate method (or combination of methods) for identifying outliers can change! We sat down with Brett Kennedy, author of Outlier Detection in Python, to dig into the topic! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

1,942 Listeners

1,084 Listeners

168 Listeners

302 Listeners

144 Listeners

3,987 Listeners

227 Listeners

269 Listeners

211 Listeners

136 Listeners

95 Listeners

225 Listeners

607 Listeners

58 Listeners

96 Listeners