
Sign up to save your podcasts
Or


Machine learning using neural networks has led to a remarkable leap forward in artificial intelligence, and the technological and social ramifications have been discussed at great length. To understand the origin and nature of this progress, it is useful to dig at least a little bit into the mathematical and algorithmic structures underlying these techniques. Anil Ananthaswamy takes up this challenge in his book Why Machines Learn: The Elegant Math Behind Modern AI. In this conversation we give a brief overview of some of the basic ideas, including the curse of dimensionality, backpropagation, transformer architectures, and more.
Blog post with transcript: https://www.preposterousuniverse.com/podcast/2025/11/24/336-anil-ananthaswamy-on-the-mathematics-of-neural-nets-and-ai/
Support Mindscape on Patreon.
Anil Ananthaswamy received a Masters degree in electrical engineering from the University of Washington, Seattle. He is currently a freelance science writer and feature editor for PNAS Front Matter. He was formerly the deputy news editor for New Scientist, a Knight Science Journalism Fellow at MIT, and journalist-in-residence at the Simon Institute for the Theory of Computing, University of California, Berkeley. He organizes an annual science journalism workshop at the National Centre for Biological Sciences at Bengaluru, India.
See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.
By Sean Carroll | Wondery4.8
40204,020 ratings
Machine learning using neural networks has led to a remarkable leap forward in artificial intelligence, and the technological and social ramifications have been discussed at great length. To understand the origin and nature of this progress, it is useful to dig at least a little bit into the mathematical and algorithmic structures underlying these techniques. Anil Ananthaswamy takes up this challenge in his book Why Machines Learn: The Elegant Math Behind Modern AI. In this conversation we give a brief overview of some of the basic ideas, including the curse of dimensionality, backpropagation, transformer architectures, and more.
Blog post with transcript: https://www.preposterousuniverse.com/podcast/2025/11/24/336-anil-ananthaswamy-on-the-mathematics-of-neural-nets-and-ai/
Support Mindscape on Patreon.
Anil Ananthaswamy received a Masters degree in electrical engineering from the University of Washington, Seattle. He is currently a freelance science writer and feature editor for PNAS Front Matter. He was formerly the deputy news editor for New Scientist, a Knight Science Journalism Fellow at MIT, and journalist-in-residence at the Simon Institute for the Theory of Computing, University of California, Berkeley. He organizes an annual science journalism workshop at the National Centre for Biological Sciences at Bengaluru, India.
See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.

2,676 Listeners

26,344 Listeners

831 Listeners

529 Listeners

246 Listeners

1,064 Listeners

935 Listeners

80 Listeners

2,343 Listeners

509 Listeners

327 Listeners

24 Listeners

393 Listeners

489 Listeners

263 Listeners