
Sign up to save your podcasts
Or
The race is on, we are on a collective mission to understand and create artificial general intelligence. Dr. Tom Zahavy, a Research Scientist at DeepMind thinks that reinforcement learning is the most general learning framework that we have today, and in his opinion it could lead to artificial general intelligence. He thinks there are no tasks which could not be solved by simply maximising a reward.
Back in 2012 when Tom was an undergraduate, before the deep learning revolution he attended an online lecture on how CNNs automatically discover representations. This was an epiphany for Tom. He decided in that very moment that he was going to become an ML researcher. Tom's view is that the ability to recognise patterns and discover structure is the most important aspect of intelligence. This has been his quest ever since. He is particularly focused on using diversity preservation and metagradients to discover this structure.
In this discussion we dive deep into meta gradients in reinforcement learning.
Video version and TOC @ https://www.youtube.com/watch?v=hfaZwgk_iS0
4.7
8484 ratings
The race is on, we are on a collective mission to understand and create artificial general intelligence. Dr. Tom Zahavy, a Research Scientist at DeepMind thinks that reinforcement learning is the most general learning framework that we have today, and in his opinion it could lead to artificial general intelligence. He thinks there are no tasks which could not be solved by simply maximising a reward.
Back in 2012 when Tom was an undergraduate, before the deep learning revolution he attended an online lecture on how CNNs automatically discover representations. This was an epiphany for Tom. He decided in that very moment that he was going to become an ML researcher. Tom's view is that the ability to recognise patterns and discover structure is the most important aspect of intelligence. This has been his quest ever since. He is particularly focused on using diversity preservation and metagradients to discover this structure.
In this discussion we dive deep into meta gradients in reinforcement learning.
Video version and TOC @ https://www.youtube.com/watch?v=hfaZwgk_iS0
481 Listeners
441 Listeners
299 Listeners
323 Listeners
765 Listeners
189 Listeners
87 Listeners
200 Listeners
372 Listeners
122 Listeners
197 Listeners
40 Listeners
76 Listeners
442 Listeners
36 Listeners