Machine Learning Street Talk (MLST)

#77 - Vitaliy Chiley (Cerebras)


Listen Later

Vitaliy Chiley  is a Machine Learning Research Engineer at the next-generation computing hardware company Cerebras Systems. We spoke about how DL workloads including sparse workloads can run faster on Cerebras hardware.


[00:00:00] Housekeeping

[00:01:08] Preamble

[00:01:50] Vitaliy Chiley Introduction

[00:03:11] Cerebrus architecture

[00:08:12] Memory management and FLOP utilisation

[00:18:01] Centralised vs decentralised compute architecture

[00:21:12] Sparsity

[00:23:47] Does Sparse NN imply Heterogeneous compute?

[00:29:21] Cost of distributed memory stores?

[00:31:01] Activation vs weight sparsity

[00:37:52] What constitutes a dead weight to be pruned?

[00:39:02] Is it still a saving if we have to choose between weight and activation sparsity?

[00:41:02] Cerebras is a cool place to work

[00:44:05] What is sparsity? Why do we need to start dense? 

[00:46:36] Evolutionary algorithms on Cerebras?

[00:47:57] How can we start sparse? Google RIGL

[00:51:44] Inductive priors, why do we need them if we can start sparse?

[00:56:02] Why anthropomorphise inductive priors?

[01:02:13] Could Cerebras run a cyclic computational graph?

[01:03:16] Are NNs locality sensitive hashing tables?


References;

Rigging the Lottery: Making All Tickets Winners [RIGL]

https://arxiv.org/pdf/1911.11134.pdf


[D] DanNet, the CUDA CNN of Dan Ciresan in Jurgen Schmidhuber's team, won 4 image recognition challenges prior to AlexNet

https://www.reddit.com/r/MachineLearning/comments/dwnuwh/d_dannet_the_cuda_cnn_of_dan_ciresan_in_jurgen/ 


A Spline Theory of Deep Learning [Balestriero]

https://proceedings.mlr.press/v80/balestriero18b.html 

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

85 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

481 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

441 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

298 Listeners

Practical AI by Practical AI LLC

Practical AI

192 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

198 Listeners

Last Week in AI by Skynet Today

Last Week in AI

298 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

428 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

121 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

201 Listeners

Unsupervised Learning by by Redpoint Ventures

Unsupervised Learning

50 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

75 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

491 Listeners

AI + a16z by a16z

AI + a16z

31 Listeners

Lightcone Podcast by Y Combinator

Lightcone Podcast

22 Listeners

Training Data by Sequoia Capital

Training Data

43 Listeners