Machine Learning Street Talk (MLST)

#83 Dr. ANDREW LAMPINEN (Deepmind) - Natural Language, Symbols and Grounding [NEURIPS2022 UNPLUGGED]


Listen Later

First in our unplugged series live from #NeurIPS2022

We discuss natural language understanding, symbol meaning and grounding and Chomsky with Dr. Andrew Lampinen from DeepMind. 

We recorded a LOT of material from NeurIPS, keep an eye out for the uploads. 


YT version: https://youtu.be/46A-BcBbMnA


References

[Paul Cisek] Beyond the computer metaphor: Behaviour as interaction

https://philpapers.org/rec/CISBTC


Linguistic Competence (Chomsky reference)

https://en.wikipedia.org/wiki/Linguistic_competence


[Andrew Lampinen] Can language models handle recursively nested grammatical structures? A case study on comparing models and humans

https://arxiv.org/abs/2210.15303


[Fodor et al] Connectionism and Cognitive Architecture: A Critical Analysis

https://ruccs.rutgers.edu/images/personal-zenon-pylyshyn/proseminars/Proseminar13/ConnectionistArchitecture.pdf


[Melanie Mitchell et al] The Debate Over Understanding in AI's Large Language Models

https://arxiv.org/abs/2210.13966


[Gary Marcus] GPT-3, Bloviator: OpenAI’s language generator has no idea what it’s talking about

https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/


[Bender et al] On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?

https://dl.acm.org/doi/10.1145/3442188.3445922


[Adam Santoro, Andrew Lampinen et al] Symbolic Behaviour in Artificial Intelligence

https://arxiv.org/abs/2102.03406


[Ishita Dasgupta, Lampinen et al] Language models show human-like content effects on reasoning

https://arxiv.org/abs/2207.07051


REACT - Synergizing Reasoning and Acting in Language Models

https://arxiv.org/pdf/2210.03629.pdf

https://ai.googleblog.com/2022/11/react-synergizing-reasoning-and-acting.html


[Fabian Paischer] HELM - History Compression via Language Models in Reinforcement Learning

https://ml-jku.github.io/blog/2022/helm/

https://arxiv.org/abs/2205.12258


[Laura Ruis] Large language models are not zero-shot communicators

https://arxiv.org/pdf/2210.14986.pdf


[Kumar] Using natural language and program abstractions to instill human inductive biases in machines

https://arxiv.org/pdf/2205.11558.pdf


Juho Kim

https://juhokim.com/

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

85 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

481 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

441 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

298 Listeners

Practical AI by Practical AI LLC

Practical AI

192 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

198 Listeners

Last Week in AI by Skynet Today

Last Week in AI

298 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

428 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

121 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

201 Listeners

Unsupervised Learning by by Redpoint Ventures

Unsupervised Learning

50 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

75 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

491 Listeners

AI + a16z by a16z

AI + a16z

31 Listeners

Lightcone Podcast by Y Combinator

Lightcone Podcast

22 Listeners

Training Data by Sequoia Capital

Training Data

43 Listeners