
Sign up to save your podcasts
Or


In the last episode How to master optimisation in deep learning I explained some of the most challenging tasks of deep learning and some methodologies and algorithms to improve the speed of convergence of a minimisation method for deep learning.
I explored the family of gradient descent methods - even though not exhaustively - giving a list of approaches that deep learning researchers are considering for different scenarios. Every method has its own benefits and drawbacks, pretty much depending on the type of data, and data sparsity. But there is one method that seems to be, at least empirically, the best approach so far.
Feel free to listen to the previous episode, share it, re-broadcast or just download for your commute.
In this episode I would like to continue that conversation about some additional strategies for optimising gradient descent in deep learning and introduce you to some tricks that might come useful when your neural network stops learning from data or when the learning process becomes so slow that it really seems it reached a plateau even by feeding in fresh data.
By Francesco Gadaleta4.2
7272 ratings
In the last episode How to master optimisation in deep learning I explained some of the most challenging tasks of deep learning and some methodologies and algorithms to improve the speed of convergence of a minimisation method for deep learning.
I explored the family of gradient descent methods - even though not exhaustively - giving a list of approaches that deep learning researchers are considering for different scenarios. Every method has its own benefits and drawbacks, pretty much depending on the type of data, and data sparsity. But there is one method that seems to be, at least empirically, the best approach so far.
Feel free to listen to the previous episode, share it, re-broadcast or just download for your commute.
In this episode I would like to continue that conversation about some additional strategies for optimising gradient descent in deep learning and introduce you to some tricks that might come useful when your neural network stops learning from data or when the learning process becomes so slow that it really seems it reached a plateau even by feeding in fresh data.

32,005 Listeners

7,589 Listeners

1,705 Listeners

1,092 Listeners

622 Listeners

585 Listeners

826 Listeners

303 Listeners

99 Listeners

9,158 Listeners

207 Listeners

306 Listeners

5,511 Listeners

228 Listeners

1,106 Listeners