
Sign up to save your podcasts
Or


The scale and frequency with which information can be distributed on social media makes the problem of fake news a rapidly metastasizing issue. To do any content filtering or labeling demands an algorithmic solution.
In today's episode, Kyle interviews Kai Shu and Mike Tamir about their independent work exploring the use of machine learning to detect fake news.
Kai Shu and his co-authors published Fake News Detection on Social Media: A Data Mining Perspective, a research paper which both surveys the existing literature and organizes the structure of the problem in a robust way.
Mike Tamir led the development of fakerfact.org, a website and Chrome/Firefox plugin which leverages machine learning to try and predict the category of a previously unseen web page, with categories like opinion, wiki, and fake news.
By Kyle Polich4.4
475475 ratings
The scale and frequency with which information can be distributed on social media makes the problem of fake news a rapidly metastasizing issue. To do any content filtering or labeling demands an algorithmic solution.
In today's episode, Kyle interviews Kai Shu and Mike Tamir about their independent work exploring the use of machine learning to detect fake news.
Kai Shu and his co-authors published Fake News Detection on Social Media: A Data Mining Perspective, a research paper which both surveys the existing literature and organizes the structure of the problem in a robust way.
Mike Tamir led the development of fakerfact.org, a website and Chrome/Firefox plugin which leverages machine learning to try and predict the category of a previously unseen web page, with categories like opinion, wiki, and fake news.

290 Listeners

622 Listeners

584 Listeners

302 Listeners

332 Listeners

228 Listeners

206 Listeners

203 Listeners

306 Listeners

96 Listeners

517 Listeners

261 Listeners

131 Listeners

228 Listeners

620 Listeners