MLOps.community

Common Mistakes in the ML Development Lifecycle // Kseniia Melnikova // MLOps Meetup #65


Listen Later

MLOps community meetup #65! Last Wednesday, we talked to Kseniia Melnikova, Product Owner (Data/AI), SoftwareOne.


Join the Community: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://go.mlops.community/YTJoinIn⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Get the newsletter: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://go.mlops.community/YTNewsletter⁠⁠⁠⁠⁠⁠⁠⁠


// Abstract
In this MLOps Meetup, we talked about the Machine Learning model lifecycle and development stages, and then analyzed the main mistakes that everybody makes at each stage. Kseniia also provided the audience with solutions to the mistakes, and we discussed existing tools for experiment management.


// Bio
Kseniia is a product owner for Data/AI-based products. Right now, she is working mostly with numeric data analysis, customer insights, and product recommendations.
Previously, Kseniia worked at Samsung Research with the biometrics team. She was studying computer science in Russia (Moscow) and a little bit of management in South Korea (Seoul). One of the most interesting directions of research - Model Lifecycle Management Systems and Reproducibility.

----------- Connect With Us ✌️-------------   
Join our Slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Kseniia on LinkedIn: https://www.linkedin.com/in/kseniia-melnikova/

Timestamps:
[00:00] Introduction to Kseniia Melnikova
[02:00] MLOps World Conference Announcement
[03:40] AI Development Process: Common Mistakes
[07:45] Step 1: Planning
[07:48] Mistake #1: Personal Decisions - Teamwork
[08:31] Mistake #1: Cases
[09:00] Mistake #1: Solution
[11:52] Scrum
[12:50] "In Scrum, it's hard to plan because, especially in research, you don't know which result affects new tasks; that's why it might be a little slow for Machine Learning."
[14:28] Step 2: Data Processing
[14:34] Mistake #2: Chaos with Datasets
[15:26] Mistake #2: Cases
[16:48] Mistake #2: Solution
[20:12] Step 3: Experiments
[20:21] Mistake #3: Lack of Experiment Tracking
[22:13] Mistake #3: Case - Manual Experiments Tracking
[24:10] Mistake #3: Solutions
[25:57] Experiments Tracking Tools Example: MLFlow UI
[26:46] Awareness of Existing Tools
[28:21] Tools' Features
[29:21] Possible Combination
[29:48] Another Possible Combination
[30:24] Best Practice
[34:18] Find Your Mistakes  
[35:35] Audio Data
[41:38] "I prefer reproducibility tools because it's automatic, and it also takes a lot of time to manually upload the results into the conference."
[43:03] AI Development Check-list
[43:40] Check-list Results
[44:52] "I think it's always interesting to rate yourself to share the results with other people to compete out of it."
[45:10] Why to Implement
[45:17] "If we have more automation on experimentations for data sets versioning, it will lead to less manual work."
[45:28] "AI Development process implementation will have the possibility to reproduce and compare experiments."
[45:37] "AI Development process implementation will make you comfortable with solving the issues you'll face every day."
[45:52] "AI Development process implementation will lead to a faster commercialization cycle because you will take less time on the process and more time for the results."
[46:03] "If we take all the principles of the AI Development process implementation, it will lead to easy communication between team members. You'll gain trust, have great teamwork, and everyone will have respect for each other."  
[49:50] Calculating the lost money

...more
View all episodesView all episodes
Download on the App Store

MLOps.communityBy Demetrios

  • 4.6
  • 4.6
  • 4.6
  • 4.6
  • 4.6

4.6

23 ratings


More shows like MLOps.community

View all
The a16z Show by Andreessen Horowitz

The a16z Show

1,093 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

622 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

302 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

332 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

146 Listeners

Y Combinator Startup Podcast by Y Combinator

Y Combinator Startup Podcast

228 Listeners

Practical AI by Practical AI LLC

Practical AI

205 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

96 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

516 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

130 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

228 Listeners

AI + a16z by a16z

AI + a16z

36 Listeners

Lightcone Podcast by Y Combinator

Lightcone Podcast

22 Listeners

Training Data by Sequoia Capital

Training Data

39 Listeners

The Pragmatic Engineer by Gergely Orosz

The Pragmatic Engineer

72 Listeners