Machine Learning Street Talk (MLST)

Deep Learning is Not So Mysterious or Different - Prof. Andrew Gordon Wilson (NYU)


Listen Later

Professor Andrew Wilson from NYU explains why many common-sense ideas in artificial intelligence might be wrong. For decades, the rule of thumb in machine learning has been to fear complexity. The thinking goes: if your model has too many parameters (is "too complex") for the amount of data you have, it will "overfit" by essentially memorizing the data instead of learning the underlying patterns. This leads to poor performance on new, unseen data. This is known as the classic "bias-variance trade-off" i.e. a balancing act between a model that's too simple and one that's too complex.


**SPONSOR MESSAGES**

Tufa AI Labs is an AI research lab based in Zurich. **They are hiring ML research engineers!**

This is a once in a lifetime opportunity to work with one of the best labs in Europe

Contact Benjamin Crouzier - https://tufalabs.ai/

Take the Prolific human data survey - https://www.prolific.com/humandatasurvey?utm_source=mlst and be the first to see the results and benchmark their practices against the wider community!

cyber•Fund https://cyber.fund/?utm_source=mlst is a founder-led investment firm accelerating the cybernetic economy

Oct SF conference - https://dagihouse.com/?utm_source=mlst - Joscha Bach keynoting(!) + OAI, Anthropic, NVDA,++

Hiring a SF VC Principal: https://talent.cyber.fund/companies/cyber-fund-2/jobs/57674170-ai-investment-principal#content?utm_source=mlst

Submit investment deck: https://cyber.fund/contact?utm_source=mlst


Description Continued:


Professor Wilson challenges this fundamental belief (fearing complexity). He makes a few surprising points:


**Bigger Can Be Better**: massive models don't just get more flexible; they also develop a stronger "simplicity bias". So, if your model is overfitting, the solution might paradoxically be to make it even bigger.


**The "Bias-Variance Trade-off" is a Misnomer**: Wilson claims you don't actually have to trade one for the other. You can have a model that is incredibly expressive and flexible while also being strongly biased toward simple solutions. He points to the "double descent" phenomenon, where performance first gets worse as models get more complex, but then surprisingly starts getting better again.


**Honest Beliefs and Bayesian Thinking**: His core philosophy is that we should build models that honestly represent our beliefs about the world. We believe the world is complex, so our models should be expressive. But we also believe in Occam's razor—that the simplest explanation is often the best. He champions Bayesian methods, which naturally balance these two ideas through a process called marginalization, which he describes as an automatic Occam's razor.


TOC:


[00:00:00] Introduction and Thesis

[00:04:19] Challenging Conventional Wisdom

[00:11:17] The Philosophy of a Scientist-Engineer

[00:16:47] Expressiveness, Overfitting, and Bias

[00:28:15] Understanding, Compression, and Kolmogorov Complexity

[01:05:06] The Surprising Power of Generalization

[01:13:21] The Elegance of Bayesian Inference

[01:33:02] The Geometry of Learning

[01:46:28] Practical Advice and The Future of AI


Prof. Andrew Gordon Wilson:

https://x.com/andrewgwils

https://cims.nyu.edu/~andrewgw/

https://scholar.google.com/citations?user=twWX2LIAAAAJ&hl=en

https://www.youtube.com/watch?v=Aja0kZeWRy4

https://www.youtube.com/watch?v=HEp4TOrkwV4


TRANSCRIPT:

https://app.rescript.info/public/share/H4Io1Y7Rr54MM05FuZgAv4yphoukCfkqokyzSYJwCK8


Hosts:

Dr. Tim Scarfe / Dr. Keith Duggar (MIT Ph.D)


REFS:


Deep Learning is Not So Mysterious or Different [Andrew Gordon Wilson]

https://arxiv.org/abs/2503.02113


Bayesian Deep Learning and a Probabilistic Perspective of Generalization [Andrew Gordon Wilson, Pavel Izmailov]

https://arxiv.org/abs/2002.08791


Compute-Optimal LLMs Provably Generalize Better With Scale [Marc Finzi, Sanyam Kapoor, Diego Granziol, Anming Gu, Christopher De Sa, J. Zico Kolter, Andrew Gordon Wilson]

https://arxiv.org/abs/2504.15208

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

90 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

479 Listeners

a16z Podcast by Andreessen Horowitz

a16z Podcast

1,092 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

303 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

338 Listeners

Y Combinator Startup Podcast by Y Combinator

Y Combinator Startup Podcast

227 Listeners

Practical AI by Practical AI LLC

Practical AI

211 Listeners

ManifoldOne by Steve Hsu

ManifoldOne

93 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

199 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

504 Listeners

Big Technology Podcast by Alex Kantrowitz

Big Technology Podcast

480 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

135 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

210 Listeners

AI + a16z by a16z

AI + a16z

35 Listeners

Training Data by Sequoia Capital

Training Data

38 Listeners

Complex Systems with Patrick McKenzie (patio11) by Patrick McKenzie

Complex Systems with Patrick McKenzie (patio11)

133 Listeners