
Sign up to save your podcasts
Or


Can you tell when an LLM is lying from the activations? Are simple methods good enough? We recently published a paper investigating if linear probes detect when Llama is deceptive.
Abstract:
AI models might use deceptive strategies as part of scheming or misaligned behaviour. Monitoring outputs alone is insufficient, since the AI might produce seemingly benign outputs while its internal reasoning is misaligned. We thus evaluate if linear probes can robustly detect deception by monitoring model activations. We test two probe-training datasets, one with contrasting instructions to be honest or deceptive (following Zou et al., 2023) and one of responses to simple roleplaying scenarios. We test whether these probes generalize to realistic settings where Llama-3.3-70B-Instruct behaves deceptively, such as concealing insider trading (Scheurer et al., 2023) and purposely underperforming on safety evaluations (Benton et al., 2024). We find that our probe distinguishes honest and deceptive [...]
The original text contained 1 footnote which was omitted from this narration.
---
First published:
Source:
Narrated by TYPE III AUDIO.
---
Images from the article:
Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
By LessWrongCan you tell when an LLM is lying from the activations? Are simple methods good enough? We recently published a paper investigating if linear probes detect when Llama is deceptive.
Abstract:
AI models might use deceptive strategies as part of scheming or misaligned behaviour. Monitoring outputs alone is insufficient, since the AI might produce seemingly benign outputs while its internal reasoning is misaligned. We thus evaluate if linear probes can robustly detect deception by monitoring model activations. We test two probe-training datasets, one with contrasting instructions to be honest or deceptive (following Zou et al., 2023) and one of responses to simple roleplaying scenarios. We test whether these probes generalize to realistic settings where Llama-3.3-70B-Instruct behaves deceptively, such as concealing insider trading (Scheurer et al., 2023) and purposely underperforming on safety evaluations (Benton et al., 2024). We find that our probe distinguishes honest and deceptive [...]
The original text contained 1 footnote which was omitted from this narration.
---
First published:
Source:
Narrated by TYPE III AUDIO.
---
Images from the article:
Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.

26,332 Listeners

2,453 Listeners

8,579 Listeners

4,183 Listeners

93 Listeners

1,598 Listeners

9,932 Listeners

95 Listeners

511 Listeners

5,518 Listeners

15,938 Listeners

546 Listeners

131 Listeners

93 Listeners

467 Listeners