
Sign up to save your podcasts
Or


GPUs dominate today’s AI landscape, but Google argues they are not necessary for every workload. As AI adoption has grown, customers have increasingly demanded compute options that deliver high performance with lower cost and power consumption. Drawing on its long history of custom silicon, Google introduced Axion CPUs in 2024 to meet needs for massive scale, flexibility, and general-purpose computing alongside AI workloads. The Axion-based C4A instance is generally available, while the newer N4A virtual machines promise up to 2x price performance.
In this episode, Andrei Gueletii, a technical solutions consultant for Google Cloud joined Gari Singh, a product manager for Google Kubernetes Engine (GKE), and Pranay Bakre, a principal solutions engineer at Arm for this episode, recorded at KubeCon + CloudNativeCon North America, in Atlanta. Built on Arm Neoverse V2 cores, Axion processors emphasize energy efficiency and customization, including flexible machine shapes that let users tailor memory and CPU resources. These features are particularly valuable for platform engineering teams, which must optimize centralized infrastructure for cost, FinOps goals, and price performance as they scale.
Importantly, many AI tasks—such as inference for smaller models or batch-oriented jobs—do not require GPUs. CPUs can be more efficient when GPU memory is underutilized or latency demands are low. By decoupling workloads and choosing the right compute for each task, organizations can significantly reduce AI compute costs.
Learn more from The New Stack about the Axion-based C4A:
Beyond Speed: Why Your Next App Must Be Multi-Architecture
Arm: See a Demo About Migrating a x86-Based App to ARM64
Join our community of newsletter subscribers to stay on top of the news and at the top of your game.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
By The New Stack4.3
3131 ratings
GPUs dominate today’s AI landscape, but Google argues they are not necessary for every workload. As AI adoption has grown, customers have increasingly demanded compute options that deliver high performance with lower cost and power consumption. Drawing on its long history of custom silicon, Google introduced Axion CPUs in 2024 to meet needs for massive scale, flexibility, and general-purpose computing alongside AI workloads. The Axion-based C4A instance is generally available, while the newer N4A virtual machines promise up to 2x price performance.
In this episode, Andrei Gueletii, a technical solutions consultant for Google Cloud joined Gari Singh, a product manager for Google Kubernetes Engine (GKE), and Pranay Bakre, a principal solutions engineer at Arm for this episode, recorded at KubeCon + CloudNativeCon North America, in Atlanta. Built on Arm Neoverse V2 cores, Axion processors emphasize energy efficiency and customization, including flexible machine shapes that let users tailor memory and CPU resources. These features are particularly valuable for platform engineering teams, which must optimize centralized infrastructure for cost, FinOps goals, and price performance as they scale.
Importantly, many AI tasks—such as inference for smaller models or batch-oriented jobs—do not require GPUs. CPUs can be more efficient when GPU memory is underutilized or latency demands are low. By decoupling workloads and choosing the right compute for each task, organizations can significantly reduce AI compute costs.
Learn more from The New Stack about the Axion-based C4A:
Beyond Speed: Why Your Next App Must Be Multi-Architecture
Arm: See a Demo About Migrating a x86-Based App to ARM64
Join our community of newsletter subscribers to stay on top of the news and at the top of your game.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

32,307 Listeners

230,157 Listeners

16,198 Listeners

9 Listeners

3 Listeners

272 Listeners

9,747 Listeners

1,099 Listeners

623 Listeners

151 Listeners

4 Listeners

25 Listeners

10,276 Listeners

521 Listeners

5,536 Listeners

15,922 Listeners