
Sign up to save your podcasts
Or


Ensemble methods have been designed to improve the performance of the single model, when the single model is not very accurate. According to the general definition of ensembling, it consists in building a number of single classifiers and then combining or aggregating their predictions into one classifier that is usually stronger than the single one.
The key idea behind ensembling is that some models will do well when they model certain aspects of the data while others will do well in modelling other aspects.
By Francesco Gadaleta4.2
7272 ratings
Ensemble methods have been designed to improve the performance of the single model, when the single model is not very accurate. According to the general definition of ensembling, it consists in building a number of single classifiers and then combining or aggregating their predictions into one classifier that is usually stronger than the single one.
The key idea behind ensembling is that some models will do well when they model certain aspects of the data while others will do well in modelling other aspects.

890 Listeners

1,640 Listeners

623 Listeners

585 Listeners

413 Listeners

303 Listeners

99 Listeners

9,162 Listeners

207 Listeners

306 Listeners

5,509 Listeners

227 Listeners

608 Listeners

181 Listeners

1,087 Listeners