
Sign up to save your podcasts
Or
Ensemble methods have been designed to improve the performance of the single model, when the single model is not very accurate. According to the general definition of ensembling, it consists in building a number of single classifiers and then combining or aggregating their predictions into one classifier that is usually stronger than the single one.
The key idea behind ensembling is that some models will do well when they model certain aspects of the data while others will do well in modelling other aspects.
4.2
7272 ratings
Ensemble methods have been designed to improve the performance of the single model, when the single model is not very accurate. According to the general definition of ensembling, it consists in building a number of single classifiers and then combining or aggregating their predictions into one classifier that is usually stronger than the single one.
The key idea behind ensembling is that some models will do well when they model certain aspects of the data while others will do well in modelling other aspects.
43,911 Listeners
11,133 Listeners
1,069 Listeners
77,573 Listeners
482 Listeners
593 Listeners
202 Listeners
298 Listeners
261 Listeners
267 Listeners
189 Listeners
2,528 Listeners
35 Listeners
2,979 Listeners
5,426 Listeners