
Sign up to save your podcasts
Or
The rapid diffusion of social media like Facebook and Twitter, and the massive use of different types of forums like Reddit, Quora, etc., is producing an impressive amount of text data every day.
There is one specific activity that many business owners have been contemplating over the last five years, that is identifying the social sentiment of their brand, by analysing the conversations of their users.
In this episode I explain how one can get the best shot at classifying sentences with deep learning and word embedding.
Schematic representation of how to learn a word embedding matrix E by training a neural network that, given the previous M words, predicts the next word in a sentence.
Word2Vec example source code
https://gist.github.com/rlangone/ded90673f65e932fd14ae53a26e89eee#file-word2vec_example-py
[1] Mikolov, T. et al., "Distributed Representations of Words and Phrases and their Compositionality", Advances in Neural Information Processing Systems 26, pages 3111-3119, 2013.
[2] The Best Embedding Method for Sentiment Classification, https://medium.com/@bramblexu/blog-md-34c5d082a8c5
[3] The state of sentiment analysis: word, sub-word and character embedding
4.2
7272 ratings
The rapid diffusion of social media like Facebook and Twitter, and the massive use of different types of forums like Reddit, Quora, etc., is producing an impressive amount of text data every day.
There is one specific activity that many business owners have been contemplating over the last five years, that is identifying the social sentiment of their brand, by analysing the conversations of their users.
In this episode I explain how one can get the best shot at classifying sentences with deep learning and word embedding.
Schematic representation of how to learn a word embedding matrix E by training a neural network that, given the previous M words, predicts the next word in a sentence.
Word2Vec example source code
https://gist.github.com/rlangone/ded90673f65e932fd14ae53a26e89eee#file-word2vec_example-py
[1] Mikolov, T. et al., "Distributed Representations of Words and Phrases and their Compositionality", Advances in Neural Information Processing Systems 26, pages 3111-3119, 2013.
[2] The Best Embedding Method for Sentiment Classification, https://medium.com/@bramblexu/blog-md-34c5d082a8c5
[3] The state of sentiment analysis: word, sub-word and character embedding
43,911 Listeners
11,133 Listeners
1,065 Listeners
77,550 Listeners
482 Listeners
593 Listeners
202 Listeners
298 Listeners
261 Listeners
267 Listeners
189 Listeners
2,528 Listeners
35 Listeners
2,979 Listeners
5,420 Listeners