
Sign up to save your podcasts
Or
Today we’re joined by Stefano Soatto, VP of AI applications science at AWS and a professor of computer science at UCLA.
Our conversation with Stefano centers on recent research of his called Graceful AI, which focuses on how to make trained systems evolve gracefully. We discuss the broader motivation for this research and the potential dangers or negative effects of constantly retraining ML models in production. We also talk about research into error rate clustering, the importance of model architecture when dealing with problems of model compression, how they’ve solved problems of regression and reprocessing by utilizing existing models, and much more.
The complete show notes for this episode can be found at twimlai.com/go/502.
4.7
416416 ratings
Today we’re joined by Stefano Soatto, VP of AI applications science at AWS and a professor of computer science at UCLA.
Our conversation with Stefano centers on recent research of his called Graceful AI, which focuses on how to make trained systems evolve gracefully. We discuss the broader motivation for this research and the potential dangers or negative effects of constantly retraining ML models in production. We also talk about research into error rate clustering, the importance of model architecture when dealing with problems of model compression, how they’ve solved problems of regression and reprocessing by utilizing existing models, and much more.
The complete show notes for this episode can be found at twimlai.com/go/502.
480 Listeners
298 Listeners
322 Listeners
156 Listeners
267 Listeners
192 Listeners
198 Listeners
287 Listeners
87 Listeners
121 Listeners
201 Listeners
39 Listeners
75 Listeners
462 Listeners
43 Listeners