Machine Learning Street Talk (MLST)

Facebook Research - Unsupervised Translation of Programming Languages


Listen Later

In this episode of Machine Learning Street Talk Dr. Tim Scarfe, Yannic Kilcher and Connor Shorten spoke with Marie-Anne Lachaux, Baptiste Roziere and Dr. Guillaume Lample from Facebook Research (FAIR) in Paris. They recently released the paper "Unsupervised Translation of Programming Languages" which was an exciting new approach to learned translation of programming languages (learned transcoder) using an unsupervised encoder trained on individual monolingual corpora i.e. no parallel language data needed. The trick they used what that there is significant token overlap when using word-piece embeddings. It was incredible to talk with this talented group of researchers and I hope you enjoy the conversation too. 

Yannic's video on this got watched over 120K times! Check it out too https://www.youtube.com/watch?v=xTzFJIknh7E

Paper https://arxiv.org/abs/2006.03511; 

Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, Guillaume Lample

Abstract;

"A transcompiler, also known as source-to-source translator, is a system that converts source code from a high-level programming language (such as C++ or Python) to another. Transcompilers are primarily used for interoperability, and to port codebases written in an obsolete or deprecated language (e.g. COBOL, Python 2) to a modern one. They typically rely on handcrafted rewrite rules, applied to the source code abstract syntax tree. Unfortunately, the resulting translations often lack readability, fail to respect the target language conventions, and require manual modifications in order to work properly. The overall translation process is timeconsuming and requires expertise in both the source and target languages, making code-translation projects expensive. Although neural models significantly outperform their rule-based counterparts in the context of natural language translation, their applications to transcompilation have been limited due to the scarcity of parallel data in this domain. In this paper, we propose to leverage recent approaches in unsupervised machine translation to train a fully unsupervised neural transcompiler. We train our model on source code from open source GitHub projects, and show that it can translate functions between C++, Java, and Python with high accuracy. Our method relies exclusively on monolingual source code, requires no expertise in the source or target languages, and can easily be generalized to other programming languages. We also build and release a test set composed of 852 parallel functions, along with unit tests to check the correctness of translations. We show that our model outperforms rule-based commercial baselines by a significant margin."

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

84 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

481 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

440 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

298 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Machine Learning Guide by OCDevel

Machine Learning Guide

765 Listeners

Practical AI by Practical AI LLC

Practical AI

189 Listeners

ManifoldOne by Steve Hsu

ManifoldOne

87 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

199 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

372 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

122 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

199 Listeners

Unsupervised Learning by by Redpoint Ventures

Unsupervised Learning

40 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

76 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

441 Listeners

Training Data by Sequoia Capital

Training Data

36 Listeners