
Sign up to save your podcasts
Or
Fine-tuning is a machine learning technique that adapts a pre-trained model to a specific task or domain. Instead of training a model from scratch, fine-tuning uses a pre-trained model as a starting point and further trains it on a smaller, task-specific dataset. This process can improve the model's performance on specialized tasks, reduce computational costs, and broaden its applicability across various fields. The goal of fine-tuning can be knowledge injection or alignment, or both. Fine-tuning is often used in natural language processing. There are many ways to approach fine-tuning, including supervised fine-tuning, few-shot learning, transfer learning, and domain-specific fine-tuning ...
5
22 ratings
Fine-tuning is a machine learning technique that adapts a pre-trained model to a specific task or domain. Instead of training a model from scratch, fine-tuning uses a pre-trained model as a starting point and further trains it on a smaller, task-specific dataset. This process can improve the model's performance on specialized tasks, reduce computational costs, and broaden its applicability across various fields. The goal of fine-tuning can be knowledge injection or alignment, or both. Fine-tuning is often used in natural language processing. There are many ways to approach fine-tuning, including supervised fine-tuning, few-shot learning, transfer learning, and domain-specific fine-tuning ...
272 Listeners
441 Listeners
298 Listeners
331 Listeners
217 Listeners
156 Listeners
192 Listeners
9,170 Listeners
409 Listeners
121 Listeners
75 Listeners
479 Listeners
94 Listeners
31 Listeners
43 Listeners