
Sign up to save your podcasts
Or
FlashAttention-3 accelerates attention on NVIDIA Hopper GPUs through three key innovations. It achieves producer-consumer asynchrony by dividing warps into producer (data loading with TMA) and consumer (computation with asynchronous Tensor Cores) roles, overlapping these critical phases. Second, it hides softmax latency by interleaving softmax operations with asynchronous GEMMs using techniques like pingpong scheduling and intra-warpgroup pipelining. Lastly, FlashAttention-3 leverages hardware-accelerated low-precision FP8 GEMM, employing block quantization and incoherent processing to enhance throughput while mitigating accuracy loss. This summary is based on the provided sources.
5
22 ratings
FlashAttention-3 accelerates attention on NVIDIA Hopper GPUs through three key innovations. It achieves producer-consumer asynchrony by dividing warps into producer (data loading with TMA) and consumer (computation with asynchronous Tensor Cores) roles, overlapping these critical phases. Second, it hides softmax latency by interleaving softmax operations with asynchronous GEMMs using techniques like pingpong scheduling and intra-warpgroup pipelining. Lastly, FlashAttention-3 leverages hardware-accelerated low-precision FP8 GEMM, employing block quantization and incoherent processing to enhance throughput while mitigating accuracy loss. This summary is based on the provided sources.
272 Listeners
441 Listeners
298 Listeners
331 Listeners
217 Listeners
156 Listeners
192 Listeners
9,170 Listeners
409 Listeners
121 Listeners
75 Listeners
479 Listeners
94 Listeners
31 Listeners
43 Listeners