Machine Learning Street Talk (MLST)

Future of Generative AI [David Foster]


Listen Later

Generative Deep Learning, 2nd Edition [David Foster]

https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/


Support us! https://www.patreon.com/mlst

MLST Discord: https://discord.gg/aNPkGUQtc5

Twitter: https://twitter.com/MLStreetTalk


In this conversation, Tim Scarfe and David Foster, the author of 'Generative Deep Learning,' dive deep into the world of generative AI, discussing topics ranging from model families and auto regressive models to the democratization of AI technology and its potential impact on various industries. They explore the connection between language and true intelligence, as well as the limitations of GPT and other large language models. The discussion also covers the importance of task-independent world models, the concept of active inference, and the potential of combining these ideas with transformer and GPT-style models.


Ethics and regulation in AI development are also discussed, including the need for transparency in data used to train AI models and the responsibility of developers to ensure their creations are not destructive. The conversation touches on the challenges posed by AI-generated content on copyright laws and the diminishing role of effort and skill in copyright due to generative models.


The impact of AI on education and creativity is another key area of discussion, with Tim and David exploring the potential benefits and drawbacks of using AI in the classroom, the need for a balance between traditional learning methods and AI-assisted learning, and the importance of teaching students to use AI tools critically and responsibly.


Generative AI in music is also explored, with David and Tim discussing the potential for AI-generated music to change the way we create and consume art, as well as the challenges in training AI models to generate music that captures human emotions and experiences.


Throughout the conversation, Tim and David touch on the potential risks and consequences of AI becoming too powerful, the importance of maintaining control over the technology, and the possibility of government intervention and regulation. The discussion concludes with a thought experiment about AI predicting human actions and creating transient capabilities that could lead to doom.


TOC:

Introducing Generative Deep Learning [00:00:00]

Model Families in Generative Modeling [00:02:25]

Auto Regressive Models and Recurrence [00:06:26]

Language and True Intelligence [00:15:07]

Language, Reality, and World Models [00:19:10]

AI, Human Experience, and Understanding [00:23:09]

GPTs Limitations and World Modeling [00:27:52]

Task-Independent Modeling and Cybernetic Loop [00:33:55]

Collective Intelligence and Emergence [00:36:01]

Active Inference vs. Reinforcement Learning [00:38:02]

Combining Active Inference with Transformers [00:41:55]

Decentralized AI and Collective Intelligence [00:47:46]

Regulation and Ethics in AI Development [00:53:59]

AI-Generated Content and Copyright Laws [00:57:06]

Effort, Skill, and AI Models in Copyright [00:57:59]

AI Alignment and Scale of AI Models [00:59:51]

Democratization of AI: GPT-3 and GPT-4 [01:03:20]

Context Window Size and Vector Databases [01:10:31]

Attention Mechanisms and Hierarchies [01:15:04]

Benefits and Limitations of Language Models [01:16:04]

AI in Education: Risks and Benefits [01:19:41]

AI Tools and Critical Thinking in the Classroom [01:29:26]

Impact of Language Models on Assessment and Creativity [01:35:09]

Generative AI in Music and Creative Arts [01:47:55]

Challenges and Opportunities in Generative Music [01:52:11]

AI-Generated Music and Human Emotions [01:54:31]

Language Modeling vs. Music Modeling [02:01:58]

Democratization of AI and Industry Impact [02:07:38]

Recursive Self-Improving Superintelligence [02:12:48]

AI Technologies: Positive and Negative Impacts [02:14:44]

Runaway AGI and Control Over AI [02:20:35]

AI Dangers, Cybercrime, and Ethics [02:23:42]

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

83 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

470 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

434 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

296 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

324 Listeners

Practical AI by Practical AI LLC

Practical AI

190 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

200 Listeners

Last Week in AI by Skynet Today

Last Week in AI

282 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

352 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

125 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

190 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

63 Listeners

"Upstream" with Erik Torenberg by Erik Torenberg

"Upstream" with Erik Torenberg

64 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

422 Listeners

AI + a16z by a16z

AI + a16z

33 Listeners

Training Data by Sequoia Capital

Training Data

36 Listeners