Machine Learning Street Talk (MLST)

GSMSymbolic paper - Iman Mirzadeh (Apple)


Listen Later

Iman Mirzadeh from Apple, who recently published the GSM-Symbolic paper discusses the crucial distinction between intelligence and achievement in AI systems. He critiques current AI research methodologies, highlighting the limitations of Large Language Models (LLMs) in reasoning and knowledge representation.


SPONSOR MESSAGES:

***

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.


Goto https://tufalabs.ai/

***


TRANSCRIPT + RESEARCH:

https://www.dropbox.com/scl/fi/mlcjl9cd5p1kem4l0vqd3/IMAN.pdf?rlkey=dqfqb74zr81a5gqr8r6c8isg3&dl=0


TOC:

1. Intelligence vs Achievement in AI Systems

[00:00:00] 1.1 Intelligence vs Achievement Metrics in AI Systems

[00:03:27] 1.2 AlphaZero and Abstract Understanding in Chess

[00:10:10] 1.3 Language Models and Distribution Learning Limitations

[00:14:47] 1.4 Research Methodology and Theoretical Frameworks


2. Intelligence Measurement and Learning

[00:24:24] 2.1 LLM Capabilities: Interpolation vs True Reasoning

[00:29:00] 2.2 Intelligence Definition and Measurement Approaches

[00:34:35] 2.3 Learning Capabilities and Agency in AI Systems

[00:39:26] 2.4 Abstract Reasoning and Symbol Understanding


3. LLM Performance and Evaluation

[00:47:15] 3.1 Scaling Laws and Fundamental Limitations

[00:54:33] 3.2 Connectionism vs Symbolism Debate in Neural Networks

[00:58:09] 3.3 GSM-Symbolic: Testing Mathematical Reasoning in LLMs

[01:08:38] 3.4 Benchmark Evaluation and Model Performance Assessment


REFS:

[00:01:00] AlphaZero chess AI system, Silver et al.

https://arxiv.org/abs/1712.01815

[00:07:10] Game Changer: AlphaZero's Groundbreaking Chess Strategies, Sadler & Regan

https://www.amazon.com/Game-Changer-AlphaZeros-Groundbreaking-Strategies/dp/9056918184

[00:11:35] Cross-entropy loss in language modeling, Voita

http://lena-voita.github.io/nlp_course/language_modeling.html

[00:17:20] GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in LLMs, Mirzadeh et al.

https://arxiv.org/abs/2410.05229

[00:21:25] Connectionism and Cognitive Architecture: A Critical Analysis, Fodor & Pylyshyn

https://www.sciencedirect.com/science/article/pii/001002779090014B

[00:28:55] Brain-to-body mass ratio scaling laws, Sutskever

https://www.theverge.com/2024/12/13/24320811/what-ilya-sutskever-sees-openai-model-data-training

[00:29:40] On the Measure of Intelligence, Chollet

https://arxiv.org/abs/1911.01547

[00:33:30] On definition of intelligence, Gignac et al.

https://www.sciencedirect.com/science/article/pii/S0160289624000266

[00:35:30] Defining intelligence, Wang

https://cis.temple.edu/~wangp/papers.html

[00:37:40] How We Learn: Why Brains Learn Better Than Any Machine... for Now, Dehaene

https://www.amazon.com/How-We-Learn-Brains-Machine/dp/0525559884

[00:39:35] Surfaces and Essences: Analogy as the Fuel and Fire of Thinking, Hofstadter and Sander

https://www.amazon.com/Surfaces-Essences-Analogy-Fuel-Thinking/dp/0465018475

[00:43:15] Chain-of-thought prompting, Wei et al.

https://arxiv.org/abs/2201.11903

[00:47:20] Test-time scaling laws in machine learning, Brown

https://podcasts.apple.com/mv/podcast/openais-noam-brown-ilge-akkaya-and-hunter-lightman-on/id1750736528?i=1000671532058

[00:47:50] Scaling Laws for Neural Language Models, Kaplan et al.

https://arxiv.org/abs/2001.08361

[00:55:15] Tensor product variable binding, Smolensky

https://www.sciencedirect.com/science/article/abs/pii/000437029090007M

[01:08:45] GSM-8K dataset, OpenAI

https://huggingface.co/datasets/openai/gsm8k

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

90 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

479 Listeners

The a16z Show by Andreessen Horowitz

The a16z Show

1,095 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

302 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

333 Listeners

Y Combinator Startup Podcast by Y Combinator

Y Combinator Startup Podcast

228 Listeners

Practical AI by Practical AI LLC

Practical AI

204 Listeners

ManifoldOne by Steve Hsu

ManifoldOne

95 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

207 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

517 Listeners

Big Technology Podcast by Alex Kantrowitz

Big Technology Podcast

501 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

130 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

228 Listeners

AI + a16z by a16z

AI + a16z

36 Listeners

Training Data by Sequoia Capital

Training Data

40 Listeners

Complex Systems with Patrick McKenzie (patio11) by Patrick McKenzie

Complex Systems with Patrick McKenzie (patio11)

134 Listeners