MLOps.community

How to Avoid Suffering in Mlops/Data Engineering Role // Igor Lushchyk // MLOps Meetup #55


Listen Later

MLOps community meetup #55! Last Wednesday, we talked to Igor Lushchyk, Data Engineer, Adyen.  


Join the Community: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://go.mlops.community/YTJoinIn⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Get the newsletter: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://go.mlops.community/YTNewsletter


// Abstract:
Building Data Science and Machine Learning platforms at a scale-up. Having the main difficulty in finding the correct processes, and basically being a toddler who learns how to walk on a steep staircase. The transition from homegrown platforms to open source solutions, supporting old solutions and maturing them, makes data scientists happy.  


// Bio:
Igor is a software engineer with more than 10 years of experience. With a background in bioinformatics, he even started a PhD but didn't finish it.


As a data engineer, Igor has been working for the last 6 or 7 years, or maybe more, because he was doing almost the same data engineering stuff, but his position was named differently.


Igor has been doing a lot of MLOps in 4-5 years now. He doesn't know what he was doing more than - Data Engineering or MLOps. And that’s how this topic came about.  

----------- Connect With Us ✌️-------------   
Join our Slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Igor on LinkedIn: https://www.linkedin.com/in/igor-lushchyk/


Timestamps:
[00:00] Introduction to Igor Lushchyk
[02:05] Igor's background in tech
[07:42] Tips you can pass on
[11:05] How these tools work, and how they play together, and what is underneath?
[13:18] Dedicated MLOps team
[13:55] Central Data Infrastructure Section
[16:57] Transfer over to open-source
[20:24] If you don't plan for production from the beginning, then it's going to be painful trying to go from POC to production.
[22:08] How do you handle data lineage?
[25:09] You chose that back in the day, but you're regretting it.
[26:34] "Try to use tools which solve 80% of your use cases, and maybe 20% you'll have the suffering, but at least it's not 100% suffering."
[27:27] Friction points
[28:53] Interaction with Data Scientists
[29:21] "We have alignment sessions. We have different levels of representation. We share our progress."
[32:42] Build verse by decisions
[34:04] When to build or grab an open-source tool
[35:51] Build your own or buy open-source?
[37:11] Certain maturity and a certain number of engineers
[38:11] Startup to go with open-source
[40:14] Correct transition process
[40:56] "There are no other ways but to communicate with data scientists. Your team needs to have a close loop for future priorities, what to take with you, and what to leave behind."
[44:51] What to use in the monitoring piece
[45:36] Prometheus and Grafana
[48:07] Do you have automatic retriggering monitoring of Models set up?
[51:55] Hardware for on-prim model training
[52:38] "Machine Learning model prediction is a spear bomb."
[53:55] War or horror stories
[54:15] "Guys, don't do context switching!"
[55:54] "I won't say that Adyen is a company that allows you to make mistakes, but you can make mistakes."

...more
View all episodesView all episodes
Download on the App Store

MLOps.communityBy Demetrios

  • 4.6
  • 4.6
  • 4.6
  • 4.6
  • 4.6

4.6

23 ratings


More shows like MLOps.community

View all
The a16z Show by Andreessen Horowitz

The a16z Show

1,093 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

622 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

302 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

332 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

146 Listeners

Y Combinator Startup Podcast by Y Combinator

Y Combinator Startup Podcast

228 Listeners

Practical AI by Practical AI LLC

Practical AI

205 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

96 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

516 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

130 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

228 Listeners

AI + a16z by a16z

AI + a16z

36 Listeners

Lightcone Podcast by Y Combinator

Lightcone Podcast

22 Listeners

Training Data by Sequoia Capital

Training Data

39 Listeners

The Pragmatic Engineer by Gergely Orosz

The Pragmatic Engineer

72 Listeners