MLOps.community

Human-centric ML Infrastructure: A Netflix Original // Savin Goyal // MLOps Meetup #44


Listen Later

MLOps community meetup #44! Last Wednesday, we talked to Savin Goyal, Tech Lead for the ML Infra team at Netflix.


Join the Community: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://go.mlops.community/YTJoinIn⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Get the newsletter: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://go.mlops.community/YTNewsletter⁠⁠⁠⁠⁠


// Abstract:

In this conversation, Savin talked about some of the challenges encountered and choices made by the Netflix ML Infrastructure team while developing tooling for data scientists.


// Bio:

Savin is an engineer on the ML Infrastructure team at Netflix. He focuses on building generalizable infrastructure to accelerate the impact of data science at Netflix.


// Other links to check on Savin:
https://www.usenix.org/conference/opml20/presentation/cepoi
https://www.youtube.com/watch?v=lakPlz8GJcA&ab_channel=RConsortium
https://www.youtube.com/watch?v=-oMZAS9qfrE&ab_channel=AnalyticsIndiaMagazine
https://www.youtube.com/watch?v=yyWirT279tY&ab_channel=FunctionalTV
https://www.youtube.com/watch?v=QkRJ24Q0E-k&ab_channel=Matroid


----------- Connect With Us ✌️-------------   
Join our Slack community:  https://go.mlops.community/slack
Follow us on Twitter:  @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Savin on LinkedIn: https://www.linkedin.com/in/savingoyal/


Timestamps:
[00:00] Background of Savin Goyal
[02:41] Breakdown of Metaflow
[05:44] In the stack, where does Metaflow stand?
[13:23] Where does Metaflow start in the Runway Project?
[15:27] What tools or storage does Netflix use for DataOps, ie, the front-end management of data sets, and how does that integrate with Metaflow? [18:56] Recommender Systems: Can you explain the other areas that you're using Machine Learning in?
[22:27] What do you feel is the hardest part of building an operating  Machine Learning workflow? [28:45] 3 Pillars: Reproducibility, Scalability, Usability.
[36:05] You give so much power to people. How do you keep them from going overboard?
[37:47] Can you explain this Pillar of Usability?
[41:09] Road-based access control has been coming up a lot recently. Does Metaflow do something specific for that?
[44:49] What are some learnings that come across that you didn't have since you open-sourced when you were working at Netflix?
[48:10] What kind of trends have you been seeing? Where do you feel like the market is going?
[50:33] Have you seen some companies really interested in Metaflow? How have you been seeing them combine other tools that are out there?


...more
View all episodesView all episodes
Download on the App Store

MLOps.communityBy Demetrios

  • 4.6
  • 4.6
  • 4.6
  • 4.6
  • 4.6

4.6

23 ratings


More shows like MLOps.community

View all
The a16z Show by Andreessen Horowitz

The a16z Show

1,094 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

622 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

302 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

332 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

146 Listeners

Y Combinator Startup Podcast by Y Combinator

Y Combinator Startup Podcast

228 Listeners

Practical AI by Practical AI LLC

Practical AI

205 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

96 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

516 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

130 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

228 Listeners

AI + a16z by a16z

AI + a16z

36 Listeners

Lightcone Podcast by Y Combinator

Lightcone Podcast

22 Listeners

Training Data by Sequoia Capital

Training Data

39 Listeners

The Pragmatic Engineer by Gergely Orosz

The Pragmatic Engineer

72 Listeners