Machine Learning Street Talk (MLST)

Is ChatGPT an N-gram model on steroids?


Listen Later

DeepMind Research Scientist / MIT scholar Dr. Timothy Nguyen discusses his recent paper on understanding transformers through n-gram statistics. Nguyen explains his approach to analyzing transformer behavior using a kind of "template matching" (N-grams), providing insights into how these models process and predict language.


MLST is sponsored by Brave:

The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmentated generation. Try it now - get 2,000 free queries monthly at http://brave.com/api.


Key points covered include:

A method for describing transformer predictions using n-gram statistics without relying on internal mechanisms.

The discovery of a technique to detect overfitting in large language models without using holdout sets.

Observations on curriculum learning, showing how transformers progress from simpler to more complex rules during training.

Discussion of distance measures used in the analysis, particularly the variational distance.

Exploration of model sizes, training dynamics, and their impact on the results.


We also touch on philosophical aspects of describing versus explaining AI behavior, and the challenges in understanding the abstractions formed by neural networks. Nguyen concludes by discussing potential future research directions, including attempts to convert descriptions of transformer behavior into explanations of internal mechanisms.


Timothy Nguyen's earned his B.S. and Ph.D. in mathematics from Caltech and MIT, respectively. He held positions as Research Assistant Professor at the Simons Center for Geometry and Physics (2011-2014) and Visiting Assistant Professor at Michigan State University (2014-2017). During this time, his research expanded into high-energy physics, focusing on mathematical problems in quantum field theory. His work notably provided a simplified and corrected formulation of perturbative path integrals.


Since 2017, Nguyen has been working in industry, applying his expertise to machine learning. He is currently at DeepMind, where he contributes to both fundamental research and practical applications of deep learning to solve real-world problems.


Refs:

The Cartesian Cafe

https://www.youtube.com/@TimothyNguyen


Understanding Transformers via N-Gram Statistics

https://www.researchgate.net/publication/382204056_Understanding_Transformers_via_N-Gram_Statistics


TOC

00:00:00 Timothy Nguyen's background

00:02:50 Paper overview: transformers and n-gram statistics

00:04:55 Template matching and hash table approach

00:08:55 Comparing templates to transformer predictions

00:12:01 Describing vs explaining transformer behavior

00:15:36 Detecting overfitting without holdout sets

00:22:47 Curriculum learning in training

00:26:32 Distance measures in analysis

00:28:58 Model sizes and training dynamics

00:30:39 Future research directions

00:32:06 Conclusion and future topics

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

84 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

480 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

441 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

295 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

325 Listeners

Machine Learning Guide by OCDevel

Machine Learning Guide

765 Listeners

Practical AI by Practical AI LLC

Practical AI

189 Listeners

ManifoldOne by Steve Hsu

ManifoldOne

87 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

200 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

372 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

123 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

197 Listeners

Unsupervised Learning by by Redpoint Ventures

Unsupervised Learning

40 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

76 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

443 Listeners

Training Data by Sequoia Capital

Training Data

36 Listeners