
Sign up to save your podcasts
Or


Enterprise AI is still in its infancy, with less than 1% of enterprise data currently used to fuel AI, according to Raj Verma, CEO of SingleStore. While consumer AI is slightly more advanced, most organizations are only beginning to understand the scale of infrastructure needed for true AI adoption. Verma predicts AI will evolve in three phases: first, the easy tasks will be automated; next, complex tasks will become easier; and finally, the seemingly impossible will become achievable—likely within three years.
However, to reach that point, enterprises must align their data strategies with their AI ambitions. Many have rushed into AI fearing obsolescence, but without preparing their data infrastructure, they're at risk of failure. Current legacy systems are not designed for the massive concurrency demands of agentic AI, potentially leading to underperformance. Verma emphasizes the need to move beyond siloed or "swim lane" databases toward unified, high-performance data platforms tailored for the scale and complexity of the AI era.
Learn more from The New Stack about the latest evolution in AI infrastructure:
How To Use AI To Design Intelligent, Adaptable Infrastructure
How to Support Developers in Building AI Workloads
Join our community of newsletter subscribers to stay on top of the news and at the top of your game.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
By The New Stack4.3
3131 ratings
Enterprise AI is still in its infancy, with less than 1% of enterprise data currently used to fuel AI, according to Raj Verma, CEO of SingleStore. While consumer AI is slightly more advanced, most organizations are only beginning to understand the scale of infrastructure needed for true AI adoption. Verma predicts AI will evolve in three phases: first, the easy tasks will be automated; next, complex tasks will become easier; and finally, the seemingly impossible will become achievable—likely within three years.
However, to reach that point, enterprises must align their data strategies with their AI ambitions. Many have rushed into AI fearing obsolescence, but without preparing their data infrastructure, they're at risk of failure. Current legacy systems are not designed for the massive concurrency demands of agentic AI, potentially leading to underperformance. Verma emphasizes the need to move beyond siloed or "swim lane" databases toward unified, high-performance data platforms tailored for the scale and complexity of the AI era.
Learn more from The New Stack about the latest evolution in AI infrastructure:
How To Use AI To Design Intelligent, Adaptable Infrastructure
How to Support Developers in Building AI Workloads
Join our community of newsletter subscribers to stay on top of the news and at the top of your game.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

9 Listeners

3 Listeners

271 Listeners

291 Listeners

624 Listeners

155 Listeners

41 Listeners

434 Listeners

4 Listeners

987 Listeners

188 Listeners

181 Listeners

210 Listeners

203 Listeners

62 Listeners

59 Listeners

97 Listeners

64 Listeners