Gradient Dissent: Conversations on AI

Luis Ceze — Accelerating Machine Learning Systems


Listen Later

From Apache TVM to OctoML, Luis gives direct insight into the world of ML hardware optimization, and where systems optimization is heading.
---
Luis Ceze is co-founder and CEO of OctoML, co-author of the Apache TVM Project, and Professor of Computer Science and Engineering at the University of Washington. His research focuses on the intersection of computer architecture, programming languages, machine learning, and molecular biology.
Connect with Luis:
📍 Twitter: https://twitter.com/luisceze
📍 University of Washington profile: https://homes.cs.washington.edu/~luisceze/
---
⏳ Timestamps:
0:00 Intro and sneak peek
0:59 What is TVM?
8:57 Freedom of choice in software and hardware stacks
15:53 How new libraries can improve system performance
20:10 Trade-offs between efficiency and complexity
24:35 Specialized instructions
26:34 The future of hardware design and research
30:03 Where does architecture and research go from here?
30:56 The environmental impact of efficiency
32:49 Optimizing and trade-offs
37:54 What is OctoML and the Octomizer?
42:31 Automating systems design with and for ML
44:18 ML and molecular biology
46:09 The challenges of deployment and post-deployment
🌟 Transcript: http://wandb.me/gd-luis-ceze 🌟
Links:
1. OctoML: https://octoml.ai/
2. Apache TVM: https://tvm.apache.org/
3. "Scalable and Intelligent Learning Systems" (Chen, 2019): https://digital.lib.washington.edu/researchworks/handle/1773/44766
4. "Principled Optimization Of Dynamic Neural Networks" (Roesch, 2020): https://digital.lib.washington.edu/researchworks/handle/1773/46765
5. "Cross-Stack Co-Design for Efficient and Adaptable Hardware Acceleration" (Moreau, 2018): https://digital.lib.washington.edu/researchworks/handle/1773/43349
6. "TVM: An Automated End-to-End Optimizing Compiler for Deep Learning" (Chen et al., 2018): https://www.usenix.org/system/files/osdi18-chen.pdf
7. Porcupine is a molecular tagging system introduced in "Rapid and robust assembly and decoding of molecular tags with DNA-based nanopore signatures" (Doroschak et al., 2020): https://www.nature.com/articles/s41467-020-19151-8
---
Get our podcast on these platforms:
👉 Apple Podcasts: http://wandb.me/apple-podcasts​​
👉 Spotify: http://wandb.me/spotify​
👉 Google Podcasts: http://wandb.me/google-podcasts​​
👉 YouTube: http://wandb.me/youtube​​
👉 Soundcloud: http://wandb.me/soundcloud​
Join our community of ML practitioners where we host AMAs, share interesting projects and meet other people working in Deep Learning:
http://wandb.me/slack​​
Check out Fully Connected, which features curated machine learning reports by researchers exploring deep learning techniques, Kagglers showcasing winning models, industry leaders sharing best practices, and more:
https://wandb.ai/fully-connected
...more
View all episodesView all episodes
Download on the App Store

Gradient Dissent: Conversations on AIBy Lukas Biewald

  • 4.8
  • 4.8
  • 4.8
  • 4.8
  • 4.8

4.8

66 ratings


More shows like Gradient Dissent: Conversations on AI

View all
a16z Podcast by Andreessen Horowitz

a16z Podcast

997 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

439 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

295 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

324 Listeners

Practical AI by Practical AI LLC

Practical AI

189 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

203 Listeners

Last Week in AI by Skynet Today

Last Week in AI

281 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

89 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

357 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

125 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

196 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

64 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

420 Listeners

AI + a16z by a16z

AI + a16z

32 Listeners

Training Data by Sequoia Capital

Training Data

37 Listeners