MLOps.community

Machine in Production = Data Engineering + ML + Software Engineering // Satish Chandra Gupta // MLOps Coffee Sessions #16


Listen Later

//Bio

Satish built compilers, profilers, IDEs, and other dev tools for over a decade. At Microsoft Research, he saw his colleagues solving hard program analysis problems using Machine Learning. That is when he got curious and started learning. His approach to ML is influenced by his software engineering background of building things for production.   He has a keen interest in doing ML in production, which is a lot more than training and tuning the models. The first step is to understand the product and business context, then building an efficient pipeline, then training models, and finally monitoring its efficacy and impact on the business.  He considers ML as another tool in the software engineering toolbox, albeit a very powerful one.  He is a co-founder of Slang Labs, a Voice Assistant as a Service platform for building in-app voice assistants.  

//Talk Takeaways ML-driven product features will grow manifold. Organizations take an evolutionary approach to absorb tech innovations. ML will be no exception. How Organizations adopted cloud can offer useful lessons.
ML/DS folks who invest in an understanding business context and tech environment of the org will make a bigger impact.
Organizations that invest in data infrastructure will be more successful in extracting value from machine learning.  

//Other links you can check Satish on
An Engineer’s trek into Machine Learning:  
https://scgupta.link/ml-intro-for-developers
Architecture for High-Throughput Low-Latency Big Data Pipeline on Cloud:
https://scgupta.link/big-data-pipeline-architecture
Data pipeline article:
https://scgupta.link/big-data-pipeline-architecture or
https://towardsdatascience.com/scalable-efficient-big-data-analytics-machine-learning-pipeline-architecture-on-cloud-4d59efc092b5
Tips for software engineers based on my experience of getting into ML:
https://scgupta.link/ml-intro-for-developers or https://towardsdatascience.com/software-engineers-trek-into-machine-learning-46b45895d9e0
Linkedin:
https://www.linkedin.com/in/scgupta
Twitter:
https://twitter.com/scgupta
Personal Website:
http://scgupta.me
Company Website:
https://slanglabs.in
Voice Assistants info:
https://www.slanglabs.in/voice-assistants

Timestamps:
0:00 - Intro to Satish Chandra Gupta
1:05 - Background of Satish on Machine Learning
3:29 - Satish's background on what he's doing now
5:34 - Why were you interested in the challenges of the workload?
9:53 - As you're looking at the data pipeline, do you see much overlap there?
15:38 - Relationships between engineering pipeline characteristics and how they relate to data.
20:24 - Tips for saving when you're building these pipeline.
24:44 - First point of engagement: Collection
31:26 - Possibilities of Data Architecture
38:03 - Why is it beneficial to save money?
44:22 - Learnings of Satish with his current project, Voice Assistant as a service.

...more
View all episodesView all episodes
Download on the App Store

MLOps.communityBy Demetrios

  • 4.9
  • 4.9
  • 4.9
  • 4.9
  • 4.9

4.9

20 ratings


More shows like MLOps.community

View all
Software Engineering Radio - the podcast for professional software developers by se-radio@computer.org

Software Engineering Radio - the podcast for professional software developers

272 Listeners

Data Skeptic by Kyle Polich

Data Skeptic

481 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

623 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

445 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

297 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

142 Listeners

DataFramed by DataCamp

DataFramed

267 Listeners

Practical AI by Practical AI LLC

Practical AI

190 Listeners

The Stack Overflow Podcast by The Stack Overflow Podcast

The Stack Overflow Podcast

63 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

86 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

123 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

75 Listeners

AI + a16z by a16z

AI + a16z

31 Listeners

The Pragmatic Engineer by Gergely Orosz

The Pragmatic Engineer

52 Listeners