MLOps.community

Making MLFlow // Lead MLFlow Maintainer Corey Zumar // MLOps Coffee Sessions #103


Listen Later

MLOps Coffee Sessions #103 with Corey Zumar, MLOps Podcast on Making MLflow co-hosted by Mihail Eric.

Join the Community: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://go.mlops.community/YTJoinIn⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Get the newsletter: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://go.mlops.community/YTNewsletter⁠⁠


// Abstract
Because MLOps is a broad ecosystem of rapidly evolving tools and techniques, it creates several requirements and challenges for platform developers:

- To serve the needs of many practitioners and organizations, it's important for MLOps platforms to support a variety of tools in the ecosystem. This necessitates extra scrutiny when designing APIs, as well as rigorous testing strategies to ensure compatibility.  

- Extensibility to new tools and frameworks is a must, but it's important not to sacrifice maintainability. MLflow Plugins (https://www.mlflow.org/docs/latest/plugins.html) is a great example of striking this balance.  

- Open source is a great space for MLOps platforms to flourish. MLflow's growth has been heavily aided by: 1. meaningful feedback from a community of ML practitioners with a wide range of use cases and workflows & 2. collaboration with industry experts from a variety of organizations to co-develop APIs that are becoming standards in the MLOps space.

// Bio
Corey Zumar is a software engineer at Databricks, where he’s spent the last four years working on machine learning infrastructure and APIs for the machine learning lifecycle, including model management and production deployment. Corey is an active developer of MLflow. He holds a master’s degree in computer science from UC Berkeley.

// MLOps Jobs board  
jobs.mlops.community

//MLOps Swag/Merch
https://mlops-community.myshopify.com/

// Related Links

--------------- ✌️Connect With Us ✌️ -------------
Join our Slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register
Catch all episodes, blogs, newsletters, and more: https://mlops.community/

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Mihail on LinkedIn: https://www.linkedin.com/in/mihaileric/
Connect with Corey on LinkedIn: https://www.linkedin.com/in/corey-zumar/

Timestamps:
[00:00] Origin story of MLFlow
[02:12] Spark as a big player
[03:12] Key insights
[04:42] Core abstractions and principles of MLFlow's success
[07:08] Product development with open-source
[09:29] Fine line between competing principles
[11:53] Shameless way to pursue collaboration
[12:24] Right go-to-market open-source
[16:27] Vanity metrics
[18:57] First gate of MLOps drug
[22:11] Project fundamentals
[24:29] Through the pillars
[26:14] Best in breed or one tool to rule them all
[29:16] MLOps space is mature with the MLOps tool
[30:49] Ultimate vision for MLFlow
[33:56] Alignment of end-users and business values
[38:11] Adding a project abstraction separate from the current ML project
[42:03] Implementing bigger bets in certain directions
[44:54] Log in features to the experiment page
[45:46] Challenge when operationalizing MLFlow in their stack
[48:34] What would you work on if it weren't MLFlow?
[49:52] Something to put on top of MLFlow
[51:42] Proxy metric
[52:39] Feature Stores and MLFlow
[54:33] Lightning round

[57:36] Wrap up

...more
View all episodesView all episodes
Download on the App Store

MLOps.communityBy Demetrios

  • 4.6
  • 4.6
  • 4.6
  • 4.6
  • 4.6

4.6

23 ratings


More shows like MLOps.community

View all
The a16z Show by Andreessen Horowitz

The a16z Show

1,093 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

622 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

302 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

332 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

146 Listeners

Y Combinator Startup Podcast by Y Combinator

Y Combinator Startup Podcast

228 Listeners

Practical AI by Practical AI LLC

Practical AI

205 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

96 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

516 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

130 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

228 Listeners

AI + a16z by a16z

AI + a16z

36 Listeners

Lightcone Podcast by Y Combinator

Lightcone Podcast

22 Listeners

Training Data by Sequoia Capital

Training Data

39 Listeners

The Pragmatic Engineer by Gergely Orosz

The Pragmatic Engineer

72 Listeners