
Sign up to save your podcasts
Or


In a neural network, the output value of a neuron is almost always transformed in some way using a function. A trivial choice would be a linear transformation which can only scale the data. However, other transformations, like a step function allow for non-linear properties to be introduced.
Activation functions can also help to standardize your data between layers. Some functions such as the sigmoid have the effect of "focusing" the area of interest on data. Extreme values are placed close together, while values near it's point of inflection change more quickly with respect to small changes in the input. Similarly, these functions can take any real number and map all of them to a finite range such as [0, 1] which can have many advantages for downstream calculation.
In this episode, we overview the concept and discuss a few reasons why you might select one function verse another.
By Kyle Polich4.4
475475 ratings
In a neural network, the output value of a neuron is almost always transformed in some way using a function. A trivial choice would be a linear transformation which can only scale the data. However, other transformations, like a step function allow for non-linear properties to be introduced.
Activation functions can also help to standardize your data between layers. Some functions such as the sigmoid have the effect of "focusing" the area of interest on data. Extreme values are placed close together, while values near it's point of inflection change more quickly with respect to small changes in the input. Similarly, these functions can take any real number and map all of them to a finite range such as [0, 1] which can have many advantages for downstream calculation.
In this episode, we overview the concept and discuss a few reasons why you might select one function verse another.

290 Listeners

622 Listeners

584 Listeners

302 Listeners

332 Listeners

228 Listeners

205 Listeners

205 Listeners

306 Listeners

96 Listeners

515 Listeners

262 Listeners

131 Listeners

228 Listeners

622 Listeners