
Sign up to save your podcasts
Or


In this episode we discuss the complexity class of EXP-Time which contains algorithms which require $O(2^{p(n)})$ time to run. In other words, the worst case runtime is exponential in some polynomial of the input size. Problems in this class are even more difficult than problems in NP since you can't even verify a solution in polynomial time.
We mostly discuss Generalized Chess as an intuitive example of a problem in EXP-Time. Another well-known problem is determining if a given algorithm will halt in k steps. That extra condition of restricting it to k steps makes this problem distinct from Turing's original definition of the halting problem which is known to be intractable.
By Kyle Polich4.4
475475 ratings
In this episode we discuss the complexity class of EXP-Time which contains algorithms which require $O(2^{p(n)})$ time to run. In other words, the worst case runtime is exponential in some polynomial of the input size. Problems in this class are even more difficult than problems in NP since you can't even verify a solution in polynomial time.
We mostly discuss Generalized Chess as an intuitive example of a problem in EXP-Time. Another well-known problem is determining if a given algorithm will halt in k steps. That extra condition of restricting it to k steps makes this problem distinct from Turing's original definition of the halting problem which is known to be intractable.

290 Listeners

622 Listeners

584 Listeners

302 Listeners

332 Listeners

228 Listeners

206 Listeners

203 Listeners

306 Listeners

96 Listeners

517 Listeners

261 Listeners

131 Listeners

228 Listeners

620 Listeners