
Sign up to save your podcasts
Or
Python's most popular data science libraries—pandas, numpy, and scikit-learn—were designed to run on a single computer, and in some cases, using a single processor. Whether this computer is a laptop or a server with 96 cores, your compute and memory are constrained by the size of the biggest computer you have access to.
In this course, you'll learn how to use Dask, a Python library for parallel and distributed computing, to bypass this constraint by scaling our compute and memory across multiple cores. Dask provides integrations with Python libraries like pandas, numpy, and scikit-learn so you can scale your computations without having to learn completely new libraries or significantly refactoring your code.
Daniel Gerlanc has worked as a data scientist for more than decade and written software professionally for 15 years. He spent 5 years as a quantitative analyst with two Boston hedge funds before starting Enplus Advisors. At Enplus, he works with clients on data science and custom software development with a particular focus on projects requiring expertise in both areas. He teaches data science and software development at introductory through advanced levels. He has co-authored several open source R packages, published in peer-reviewed journals, and is active in local predictive analytics groups.
Join our slack community: https://join.slack.com/t/mlops-community/shared_invite/zt-391hcpnl-aSwNf_X5RyYSh40MiRe9Lw
Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
4.9
2020 ratings
Python's most popular data science libraries—pandas, numpy, and scikit-learn—were designed to run on a single computer, and in some cases, using a single processor. Whether this computer is a laptop or a server with 96 cores, your compute and memory are constrained by the size of the biggest computer you have access to.
In this course, you'll learn how to use Dask, a Python library for parallel and distributed computing, to bypass this constraint by scaling our compute and memory across multiple cores. Dask provides integrations with Python libraries like pandas, numpy, and scikit-learn so you can scale your computations without having to learn completely new libraries or significantly refactoring your code.
Daniel Gerlanc has worked as a data scientist for more than decade and written software professionally for 15 years. He spent 5 years as a quantitative analyst with two Boston hedge funds before starting Enplus Advisors. At Enplus, he works with clients on data science and custom software development with a particular focus on projects requiring expertise in both areas. He teaches data science and software development at introductory through advanced levels. He has co-authored several open source R packages, published in peer-reviewed journals, and is active in local predictive analytics groups.
Join our slack community: https://join.slack.com/t/mlops-community/shared_invite/zt-391hcpnl-aSwNf_X5RyYSh40MiRe9Lw
Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
272 Listeners
481 Listeners
623 Listeners
446 Listeners
297 Listeners
323 Listeners
142 Listeners
267 Listeners
190 Listeners
63 Listeners
86 Listeners
123 Listeners
75 Listeners
31 Listeners
52 Listeners