
Sign up to save your podcasts
Or


Despite the success of GANs in imaging, one of its major drawbacks is the problem of 'mode collapse,' where the generator learns to produce samples with extremely low variety.
To address this issue, today's guests Arnab Ghosh and Viveka Kulharia proposed two different extensions. The first involves tweaking the generator's objective function with a diversity enforcing term that would assess similarities between the different samples generated by different generators. The second comprises modifying the discriminator objective function, pushing generations corresponding to different generators towards different identifiable modes.
By Kyle Polich4.4
475475 ratings
Despite the success of GANs in imaging, one of its major drawbacks is the problem of 'mode collapse,' where the generator learns to produce samples with extremely low variety.
To address this issue, today's guests Arnab Ghosh and Viveka Kulharia proposed two different extensions. The first involves tweaking the generator's objective function with a diversity enforcing term that would assess similarities between the different samples generated by different generators. The second comprises modifying the discriminator objective function, pushing generations corresponding to different generators towards different identifiable modes.

290 Listeners

622 Listeners

584 Listeners

302 Listeners

332 Listeners

228 Listeners

206 Listeners

203 Listeners

306 Listeners

96 Listeners

517 Listeners

261 Listeners

131 Listeners

228 Listeners

620 Listeners