TalkRL: The Reinforcement Learning Podcast

NeurIPS 2019 Deep RL Workshop


Listen Later

Thank you to all the presenters that participated.  I covered as many as I could given the time and crowds, if you were not included and wish to be, please email [email protected] 

More details on the official NeurIPS Deep RL Workshop site

  • 0:23  Approximating two value functions instead of one: towards characterizing a new family of Deep Reinforcement Learning algorithms; Matthia Sabatelli (University of Liege); Gilles Louppe (University of Liège); Pierre Geurts (University of Liège); Marco Wiering (University of Groningen) [external pdf link] 
  • 4:16  Single Deep Counterfactual Regret Minimization; Eric Steinberger (University of Cambridge). 
  • 5:38  On the Convergence of Episodic Reinforcement Learning Algorithms at the Example of RUDDER; Markus Holzleitner (LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria); José Arjona-Medina (LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria); Marius-Constantin Dinu (LIT AI Lab / University Linz ); Sepp Hochreiter (LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria). 
  • 9:33  Objective Mismatch in Model-based Reinforcement Learning; Nathan Lambert (UC Berkeley); Brandon Amos (Facebook); Omry Yadan (Facebook); Roberto Calandra (Facebook). 
  • 10:51  Option Discovery using Deep Skill Chaining; Akhil Bagaria (Brown University); George Konidaris (Brown University). 
  • 13:44  Blue River Controls: A toolkit for Reinforcement Learning Control Systems on Hardware; Kirill Polzounov (University of Calgary); Ramitha Sundar (Blue River Technology); Lee Reden (Blue River Technology). 
  • 14:52  LeDeepChef: Deep Reinforcement Learning Agent for Families of Text-Based Games; Leonard Adolphs (ETHZ); Thomas Hofmann (ETH Zurich). 
  • 16:30  Accelerating Training in Pommerman with Imitation and Reinforcement Learning; Hardik Meisheri (TCS Research); Omkar Shelke (TCS Research); Richa Verma (TCS Research); Harshad Khadilkar (TCS Research). 
  • 17:27  Dream to Control: Learning Behaviors by Latent Imagination; Danijar Hafner (Google); Timothy Lillicrap (DeepMind); Jimmy Ba (University of Toronto); Mohammad Norouzi (Google Brain) [external pdf link]
  • 20:48  Adaptive Temperature Tuning for Mellowmax in Deep Reinforcement Learning; Seungchan Kim (Brown University); George Konidaris (Brown). 
  • 22:05  Meta-learning curiosity algorithms; Ferran Alet (MIT); Martin Schneider (MIT); Tomas Lozano-Perez (MIT); Leslie Kaelbling (MIT). 
  • 24:09  Predictive Coding for Boosting Deep Reinforcement Learning with Sparse Rewards; Xingyu Lu (Berkeley); Stas Tiomkin (BAIR, UC Berkeley); Pieter Abbeel (UC Berkeley). 
  • 25:44   Swarm-inspired Reinforcement Learning via Collaborative Inter-agent Knowledge Distillation; Zhang-Wei Hong (Preferred Networks); Prabhat Nagarajan (Preferred Networks); Guilherme Maeda (Preferred Networks). 
  • 26:35  Multiplayer AlphaZero; Nicholas Petosa (Georgia Institute of Technology); Tucker Balch (Ga Tech) [external pdf link]
  • 27:43  Prioritized Sequence Experience Replay; Marc Brittain (Iowa State University); Joshua Bertram (Iowa State University); Xuxi Yang (Iowa State University); Peng Wei (Iowa State University) [external pdf link]
  • 29:14  Recurrent neural-linear posterior sampling for non-stationary bandits; Paulo Rauber (IDSIA); Aditya Ramesh (USI); Jürgen Schmidhuber (IDSIA - Lugano). 
  • 29:36  Improving Evolutionary Strategies With Past Descent Directions; Asier Mujika (ETH Zurich); Florian Meier (ETH Zurich); Marcelo Matheus Gauy (ETH Zurich); Angelika Steger (ETH Zurich) [external pdf link]
  • 31:40  ZPD Teaching Strategies for Deep Reinforcement Learning from Demonstrations; Daniel Seita (University of California, Berkeley); David Chan (University of California, Berkeley); Roshan Rao (UC Berkeley); Chen Tang (UC Berkeley); Mandi Zhao (UC Berkeley); John Canny (UC Berkeley) [external pdf link]
  • 33:05  Bottom-Up Meta-Policy Search; Luckeciano Melo (Aeronautics Institute of Technology); Marcos Máximo (Aeronautics Institute of Technology); Adilson Cunha (Aeronautics Institute of Technology) [external pdf link]
  • 33:37  MERL: Multi-Head Reinforcement Learning; Yannis Flet-Berliac (University of Lille / Inria); Philippe Preux (INRIA) [external pdf link]
  • 35:30  Emergen...
...more
View all episodesView all episodes
Download on the App Store

TalkRL: The Reinforcement Learning PodcastBy Robin Ranjit Singh Chauhan

  • 4.9
  • 4.9
  • 4.9
  • 4.9
  • 4.9

4.9

26 ratings


More shows like TalkRL: The Reinforcement Learning Podcast

View all
a16z Podcast by Andreessen Horowitz

a16z Podcast

1,023 Listeners

Data Skeptic by Kyle Polich

Data Skeptic

482 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

592 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

296 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Machine Learning Guide by OCDevel

Machine Learning Guide

765 Listeners

DataFramed by DataCamp

DataFramed

266 Listeners

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas by Sean Carroll | Wondery

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas

4,133 Listeners

Practical AI by Practical AI LLC

Practical AI

189 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

196 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

379 Listeners

Big Technology Podcast by Alex Kantrowitz

Big Technology Podcast

421 Listeners

The Joy of Why by Steven Strogatz, Janna Levin and Quanta Magazine

The Joy of Why

500 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

199 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

455 Listeners