Machine Learning Street Talk (MLST)

New "50%" ARC result and current winners interviewed


Listen Later

The ARC Challenge, created by Francois Chollet, tests how well AI systems can generalize from a few examples in a grid-based intelligence test. We interview the current winners of the ARC Challenge—Jack Cole, Mohammed Osman and their collaborator Michael Hodel. They discuss how they tackled ARC (Abstraction and Reasoning Corpus) using language models. We also discuss the new "50%" public set approach announced today from Redwood Research (Ryan Greenblatt).

Jack and Mohammed explain their winning approach, which involves fine-tuning a language model on a large, specifically-generated dataset and then doing additional fine-tuning at test-time, a technique known in this context as "active inference". They use various strategies to represent the data for the language model and believe that with further improvements, the accuracy could reach above 50%. Michael talks about his work on generating new ARC-like tasks to help train the models.
They also debate whether their methods stay true to the "spirit" of Chollet's measure of intelligence. Despite some concerns, they agree that their solutions are promising and adaptable for other similar problems.
Note:
Jack's team is still the current official winner at 33% on the private set. Ryan's entry is not on the private leaderboard or eligible.
Chollet invented ARC in 2019 (not 2017 as stated)
"Ryan's entry is not a new state of the art. We don't know exactly how well it does since it was only evaluated on 100 tasks from the evaluation set and does 50% on those, reportedly. Meanwhile Jacks team i.e. MindsAI's solution does 54% on the entire eval set and it is seemingly possible to do 60-70% with an ensemble"
Jack Cole:
https://x.com/Jcole75Cole
https://lab42.global/community-interview-jack-cole/
Mohamed Osman:
Mohamed is looking to do a PhD in AI/ML, can you help him?
https://www.linkedin.com/in/mohamedosman1905/
Michael Hodel:
https://arxiv.org/pdf/2404.07353v1
https://www.linkedin.com/in/michael-hodel/
https://x.com/bayesilicon
https://github.com/michaelhodel
Getting 50% (SoTA) on ARC-AGI with GPT-4o - Ryan Greenblatt
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
Neural networks for abstraction and reasoning: Towards broad generalization in machines [Mikel Bober-Irizar, Soumya Banerjee]
https://arxiv.org/pdf/2402.03507
Measure of intelligence:
https://arxiv.org/abs/1911.01547
YT version: https://youtu.be/jSAT_RuJ_Cg

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

84 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

480 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

441 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

295 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

325 Listeners

Machine Learning Guide by OCDevel

Machine Learning Guide

765 Listeners

Practical AI by Practical AI LLC

Practical AI

189 Listeners

ManifoldOne by Steve Hsu

ManifoldOne

87 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

200 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

372 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

123 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

197 Listeners

Unsupervised Learning by by Redpoint Ventures

Unsupervised Learning

40 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

76 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

443 Listeners

Training Data by Sequoia Capital

Training Data

36 Listeners