Machine Learning Street Talk (MLST)

New top score on ARC-AGI-2-pub (29.4%) - Jeremy Berman


Listen Later

We need AI systems to synthesise new knowledge, not just compress the data they see. Jeremy Berman, is a research scientist at Reflection AI and recent winner of the ARC-AGI v2 public leaderboard.**SPONSOR MESSAGES**—Take the Prolific human data survey - https://www.prolific.com/humandatasurvey?utm_source=mlst and be the first to see the results and benchmark their practices against the wider community!—cyber•Fund https://cyber.fund/?utm_source=mlst is a founder-led investment firm accelerating the cybernetic economyOct SF conference - https://dagihouse.com/?utm_source=mlst - Joscha Bach keynoting(!) + OAI, Anthropic, NVDA,++Hiring a SF VC Principal: https://talent.cyber.fund/companies/cyber-fund-2/jobs/57674170-ai-investment-principal#content?utm_source=mlstSubmit investment deck: https://cyber.fund/contact?utm_source=mlst— Imagine trying to teach an AI to think like a human i.e. solving puzzles that are easy for us but stump even the smartest models. Jeremy's evolutionary approach—evolving natural language descriptions instead of python code like his last version—landed him at the top with about 30% accuracy on the ARCv2.We discuss why current AIs are like "stochastic parrots" that memorize but struggle to truly reason or innovate as well as big ideas like building "knowledge trees" for real understanding, the limits of neural networks versus symbolic systems, and whether we can train models to synthesize new ideas without forgetting everything else. Jeremy Berman:https://x.com/jerber888TRANSCRIPT:https://app.rescript.info/public/share/qvCioZeZJ4Q_NlR66m-hNUZnh-qWlUJcS15Wc2OGwD0TOC:Introduction and Overview [00:00:00]ARC v1 Solution [00:07:20]Evolutionary Python Approach [00:08:00]Trade-offs in Depth vs. Breadth [00:10:33]ARC v2 Improvements [00:11:45]Natural Language Shift [00:12:35]Model Thinking Enhancements [00:13:05]Neural Networks vs. Symbolism Debate [00:14:24]Turing Completeness Discussion [00:15:24]Continual Learning Challenges [00:19:12]Reasoning and Intelligence [00:29:33]Knowledge Trees and Synthesis [00:50:15]Creativity and Invention [00:56:41]Future Directions and Closing [01:02:30]REFS:Jeremy’s 2024 article on winning ARCAGI1-pubhttps://jeremyberman.substack.com/p/how-i-got-a-record-536-on-arc-agiGetting 50% (SoTA) on ARC-AGI with GPT-4o [Greenblatt]https://blog.redwoodresearch.org/p/getting-50-sota-on-arc-agi-with-gpt https://www.youtube.com/watch?v=z9j3wB1RRGA [his MLST interview]A Thousand Brains: A New Theory of Intelligence [Hawkins]https://www.amazon.com/Thousand-Brains-New-Theory-Intelligence/dp/1541675819https://www.youtube.com/watch?v=6VQILbDqaI4 [MLST interview]Francois Chollet + Mike Knoop’s labhttps://ndea.com/On the Measure of Intelligence [Chollet]https://arxiv.org/abs/1911.01547On the Biology of a Large Language Model [Anthropic]https://transformer-circuits.pub/2025/attribution-graphs/biology.html The ARChitects [won 2024 ARC-AGI-1-private]https://www.youtube.com/watch?v=mTX_sAq--zY Connectionism critique 1998 [Fodor/Pylshyn]https://uh.edu/~garson/F&P1.PDF Questioning Representational Optimism in Deep Learning: The Fractured Entangled Representation Hypothesis [Kumar/Stanley]https://arxiv.org/pdf/2505.11581 AlphaEvolve interview (also program synthesis)https://www.youtube.com/watch?v=vC9nAosXrJw ShinkaEvolve: Evolving New Algorithms with LLMs, Orders of Magnitude More Efficiently [Lange et al]https://sakana.ai/shinka-evolve/ Deep learning with Python Rev 3 [Chollet] - READ CHAPTER 19 NOW!https://deeplearningwithpython.io/

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

90 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

479 Listeners

a16z Podcast by Andreessen Horowitz

a16z Podcast

1,092 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

303 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

338 Listeners

Y Combinator Startup Podcast by Y Combinator

Y Combinator Startup Podcast

227 Listeners

Practical AI by Practical AI LLC

Practical AI

211 Listeners

ManifoldOne by Steve Hsu

ManifoldOne

93 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

199 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

504 Listeners

Big Technology Podcast by Alex Kantrowitz

Big Technology Podcast

480 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

135 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

210 Listeners

AI + a16z by a16z

AI + a16z

35 Listeners

Training Data by Sequoia Capital

Training Data

38 Listeners

Complex Systems with Patrick McKenzie (patio11) by Patrick McKenzie

Complex Systems with Patrick McKenzie (patio11)

133 Listeners