Machine Learning Street Talk (MLST)

OpenAI GPT-3: Language Models are Few-Shot Learners


Listen Later

In this episode of Machine Learning Street Talk, Tim Scarfe, Yannic Kilcher and Connor Shorten discuss their takeaways from OpenAI’s GPT-3 language model. With the help of Microsoft’s ZeRO-2 / DeepSpeed optimiser, OpenAI trained an 175 BILLION parameter autoregressive language model. The paper demonstrates how self-supervised language modelling at this scale can perform many downstream tasks without fine-tuning.


00:00:00 Intro

00:00:54 ZeRO1+2 (model + Data parallelism) (Connor)

00:03:17 Recent history of NLP (Tim)

00:06:04 Yannic "Light-speed" Kilcher's brief overview of GPT-3

00:14:25 Reviewing Yannic's YT comments on his GPT-3 video (Tim)

00:20:26 Main show intro

00:23:03 Is GPT-3 reasoning? 

00:28:15 Architecture discussion and autoregressive (GPT*) vs denoising autoencoder (BERT)

00:36:18 Utility of GPT-3 in industry

00:43:03 Can GPT-3 do math? (reasoning/system 1/system 2)

00:51:03 Generalisation

00:56:48 Esoterics of language models

00:58:46 Architectural trade-offs

01:07:37 Memorization machines and intepretability

01:17:16 Nearest neighbour probes / watermarks

01:20:03 YouTube comments on GPT-3 video 

01:21:50 GPT-3 news article generation issue

01:27:36 Sampling data for language models / bias / fairness / politics

01:51:12 Outro


These paradigms of task adaptation are divided into zero, one, and few shot learning. Zero-shot learning is a very extreme case where we expect a language model to perform a task such as sentiment classification or extractive question answering, without any additional supervision. One and Few-shot learning provide some examples to the model. However, GPT-3s definition of this diverges a bit from the conventional literature. GPT-3 provides one and few-shot examples in the form of “In-Context Learning”. Instead of fine-tuning the model on a few examples, the model has to use the input to infer the downstream task. For example, the GPT-3 transformer has an input sequence of 2048 tokens, so demonstrations of a task such as yelp sentiment reviews, would have to fit in this input sequence as well as the new review.


Thanks for watching! Please Subscribe!

Paper Links:

GPT-3: https://arxiv.org/abs/2005.14165

ZeRO: https://arxiv.org/abs/1910.02054

ZeRO (Blog Post): https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

ZeRO-2 (Blog Post): https://www.microsoft.com/en-us/research/blog/zero-2-deepspeed-shattering-barriers-of-deep-learning-speed-scale/?OCID=msr_blog_deepspeed2_build_tw


#machinelearning #naturallanguageprocessing #deeplearning #gpt3

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

84 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

481 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

440 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

298 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Machine Learning Guide by OCDevel

Machine Learning Guide

765 Listeners

Practical AI by Practical AI LLC

Practical AI

189 Listeners

ManifoldOne by Steve Hsu

ManifoldOne

87 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

199 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

372 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

122 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

199 Listeners

Unsupervised Learning by by Redpoint Ventures

Unsupervised Learning

40 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

76 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

441 Listeners

Training Data by Sequoia Capital

Training Data

36 Listeners