
Sign up to save your podcasts
Or
In this episode of Machine Learning Street Talk, Tim Scarfe, Yannic Kilcher and Connor Shorten discuss their takeaways from OpenAI’s GPT-3 language model. With the help of Microsoft’s ZeRO-2 / DeepSpeed optimiser, OpenAI trained an 175 BILLION parameter autoregressive language model. The paper demonstrates how self-supervised language modelling at this scale can perform many downstream tasks without fine-tuning.
00:00:00 Intro
00:00:54 ZeRO1+2 (model + Data parallelism) (Connor)
00:03:17 Recent history of NLP (Tim)
00:06:04 Yannic "Light-speed" Kilcher's brief overview of GPT-3
00:14:25 Reviewing Yannic's YT comments on his GPT-3 video (Tim)
00:20:26 Main show intro
00:23:03 Is GPT-3 reasoning?
00:28:15 Architecture discussion and autoregressive (GPT*) vs denoising autoencoder (BERT)
00:36:18 Utility of GPT-3 in industry
00:43:03 Can GPT-3 do math? (reasoning/system 1/system 2)
00:51:03 Generalisation
00:56:48 Esoterics of language models
00:58:46 Architectural trade-offs
01:07:37 Memorization machines and intepretability
01:17:16 Nearest neighbour probes / watermarks
01:20:03 YouTube comments on GPT-3 video
01:21:50 GPT-3 news article generation issue
01:27:36 Sampling data for language models / bias / fairness / politics
01:51:12 Outro
These paradigms of task adaptation are divided into zero, one, and few shot learning. Zero-shot learning is a very extreme case where we expect a language model to perform a task such as sentiment classification or extractive question answering, without any additional supervision. One and Few-shot learning provide some examples to the model. However, GPT-3s definition of this diverges a bit from the conventional literature. GPT-3 provides one and few-shot examples in the form of “In-Context Learning”. Instead of fine-tuning the model on a few examples, the model has to use the input to infer the downstream task. For example, the GPT-3 transformer has an input sequence of 2048 tokens, so demonstrations of a task such as yelp sentiment reviews, would have to fit in this input sequence as well as the new review.
Thanks for watching! Please Subscribe!
Paper Links:
GPT-3: https://arxiv.org/abs/2005.14165
ZeRO: https://arxiv.org/abs/1910.02054
ZeRO (Blog Post): https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
ZeRO-2 (Blog Post): https://www.microsoft.com/en-us/research/blog/zero-2-deepspeed-shattering-barriers-of-deep-learning-speed-scale/?OCID=msr_blog_deepspeed2_build_tw
#machinelearning #naturallanguageprocessing #deeplearning #gpt3
4.7
8484 ratings
In this episode of Machine Learning Street Talk, Tim Scarfe, Yannic Kilcher and Connor Shorten discuss their takeaways from OpenAI’s GPT-3 language model. With the help of Microsoft’s ZeRO-2 / DeepSpeed optimiser, OpenAI trained an 175 BILLION parameter autoregressive language model. The paper demonstrates how self-supervised language modelling at this scale can perform many downstream tasks without fine-tuning.
00:00:00 Intro
00:00:54 ZeRO1+2 (model + Data parallelism) (Connor)
00:03:17 Recent history of NLP (Tim)
00:06:04 Yannic "Light-speed" Kilcher's brief overview of GPT-3
00:14:25 Reviewing Yannic's YT comments on his GPT-3 video (Tim)
00:20:26 Main show intro
00:23:03 Is GPT-3 reasoning?
00:28:15 Architecture discussion and autoregressive (GPT*) vs denoising autoencoder (BERT)
00:36:18 Utility of GPT-3 in industry
00:43:03 Can GPT-3 do math? (reasoning/system 1/system 2)
00:51:03 Generalisation
00:56:48 Esoterics of language models
00:58:46 Architectural trade-offs
01:07:37 Memorization machines and intepretability
01:17:16 Nearest neighbour probes / watermarks
01:20:03 YouTube comments on GPT-3 video
01:21:50 GPT-3 news article generation issue
01:27:36 Sampling data for language models / bias / fairness / politics
01:51:12 Outro
These paradigms of task adaptation are divided into zero, one, and few shot learning. Zero-shot learning is a very extreme case where we expect a language model to perform a task such as sentiment classification or extractive question answering, without any additional supervision. One and Few-shot learning provide some examples to the model. However, GPT-3s definition of this diverges a bit from the conventional literature. GPT-3 provides one and few-shot examples in the form of “In-Context Learning”. Instead of fine-tuning the model on a few examples, the model has to use the input to infer the downstream task. For example, the GPT-3 transformer has an input sequence of 2048 tokens, so demonstrations of a task such as yelp sentiment reviews, would have to fit in this input sequence as well as the new review.
Thanks for watching! Please Subscribe!
Paper Links:
GPT-3: https://arxiv.org/abs/2005.14165
ZeRO: https://arxiv.org/abs/1910.02054
ZeRO (Blog Post): https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
ZeRO-2 (Blog Post): https://www.microsoft.com/en-us/research/blog/zero-2-deepspeed-shattering-barriers-of-deep-learning-speed-scale/?OCID=msr_blog_deepspeed2_build_tw
#machinelearning #naturallanguageprocessing #deeplearning #gpt3
481 Listeners
440 Listeners
298 Listeners
323 Listeners
765 Listeners
189 Listeners
87 Listeners
199 Listeners
372 Listeners
122 Listeners
199 Listeners
40 Listeners
76 Listeners
441 Listeners
36 Listeners