
Sign up to save your podcasts
Or


Today on the show we have Elizabeth Barnes, Associate Professor in the department of Atmospheric Science at Colorado State University, who joins us to talk about her work Identifying Opportunities for Skillful Weather Prediction with Interpretable Neural Networks. Find more from the Barnes Research Group on their site.
Weather is notoriously difficult to predict. Complex systems are demanding of computational power. Further, the chaotic nature of, well, nature, makes accurate forecasting especially difficult the longer into the future one wants to look. Yet all is not lost!
In this interview, we explore the use of machine learning to help identify certain conditions under which the weather system has entered an unusually predictable position in it's normally chaotic state space.
By Kyle Polich4.4
475475 ratings
Today on the show we have Elizabeth Barnes, Associate Professor in the department of Atmospheric Science at Colorado State University, who joins us to talk about her work Identifying Opportunities for Skillful Weather Prediction with Interpretable Neural Networks. Find more from the Barnes Research Group on their site.
Weather is notoriously difficult to predict. Complex systems are demanding of computational power. Further, the chaotic nature of, well, nature, makes accurate forecasting especially difficult the longer into the future one wants to look. Yet all is not lost!
In this interview, we explore the use of machine learning to help identify certain conditions under which the weather system has entered an unusually predictable position in it's normally chaotic state space.

290 Listeners

623 Listeners

585 Listeners

301 Listeners

334 Listeners

226 Listeners

207 Listeners

204 Listeners

306 Listeners

96 Listeners

525 Listeners

261 Listeners

132 Listeners

228 Listeners

616 Listeners