
Sign up to save your podcasts
Or


Thibaut Vidal, a professor at Polytechnique Montreal, specializes in leveraging advanced algorithms and machine learning to optimize supply chain operations. In this episode, listeners will learn how graph-based approaches can transform supply chains by enabling more efficient routing, districting, and decision-making in complex logistical networks.
Key insights include the application of Graph Neural Networks to predict delivery costs, with potential to improve districting strategies for companies like UPS or Amazon and overcoming limitations of traditional heuristic methods.
Thibaut's work underscores the potential for GNN to reduce costs, enhance operational efficiency, and provide better working conditions for teams through improved route familiarity and workload balance.
By Kyle Polich4.4
475475 ratings
Thibaut Vidal, a professor at Polytechnique Montreal, specializes in leveraging advanced algorithms and machine learning to optimize supply chain operations. In this episode, listeners will learn how graph-based approaches can transform supply chains by enabling more efficient routing, districting, and decision-making in complex logistical networks.
Key insights include the application of Graph Neural Networks to predict delivery costs, with potential to improve districting strategies for companies like UPS or Amazon and overcoming limitations of traditional heuristic methods.
Thibaut's work underscores the potential for GNN to reduce costs, enhance operational efficiency, and provide better working conditions for teams through improved route familiarity and workload balance.

288 Listeners

624 Listeners

580 Listeners

303 Listeners

344 Listeners

225 Listeners

198 Listeners

204 Listeners

311 Listeners

95 Listeners

531 Listeners

262 Listeners

139 Listeners

227 Listeners

638 Listeners