Machine Learning Street Talk (MLST)

Prof. Randall Balestriero - LLMs without pretraining and SSL


Listen Later

Randall Balestriero joins the show to discuss some counterintuitive findings in AI. He shares research showing that huge language models, even when started from scratch (randomly initialized) without massive pre-training, can learn specific tasks like sentiment analysis surprisingly well, train stably, and avoid severe overfitting, sometimes matching the performance of costly pre-trained models. This raises questions about when giant pre-training efforts are truly worth it.


He also talks about how self-supervised learning (where models learn from data structure itself) and traditional supervised learning (using labeled data) are fundamentally similar, allowing researchers to apply decades of supervised learning theory to improve newer self-supervised methods.


Finally, Randall touches on fairness in AI models used for Earth data (like climate prediction), revealing that these models can be biased, performing poorly in specific locations like islands or coastlines even if they seem accurate overall, which has important implications for policy decisions based on this data.


SPONSOR MESSAGES:

***

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.


Goto https://tufalabs.ai/

***


TRANSCRIPT + SHOWNOTES:

https://www.dropbox.com/scl/fi/n7yev71nsjso71jyjz1fy/RANDALLNEURIPS.pdf?rlkey=0dn4injp1sc4ts8njwf3wfmxv&dl=0


TOC:

1. Model Training Efficiency and Scale

[00:00:00] 1.1 Training Stability of Large Models on Small Datasets

[00:04:09] 1.2 Pre-training vs Random Initialization Performance Comparison

[00:07:58] 1.3 Task-Specific Models vs General LLMs Efficiency


2. Learning Paradigms and Data Distribution

[00:10:35] 2.1 Fair Language Model Paradox and Token Frequency Issues

[00:12:02] 2.2 Pre-training vs Single-task Learning Spectrum

[00:16:04] 2.3 Theoretical Equivalence of Supervised and Self-supervised Learning

[00:19:40] 2.4 Self-Supervised Learning and Supervised Learning Relationships

[00:21:25] 2.5 SSL Objectives and Heavy-tailed Data Distribution Challenges


3. Geographic Representation in ML Systems

[00:25:20] 3.1 Geographic Bias in Earth Data Models and Neural Representations

[00:28:10] 3.2 Mathematical Limitations and Model Improvements

[00:30:24] 3.3 Data Quality and Geographic Bias in ML Datasets


REFS:

[00:01:40] Research on training large language models from scratch on small datasets, Randall Balestriero et al.

https://openreview.net/forum?id=wYGBWOjq1Q

[00:10:35] The Fair Language Model Paradox (2024), Andrea Pinto, Tomer Galanti, Randall Balestriero

https://arxiv.org/abs/2410.11985

[00:12:20] Muppet: Massive Multi-task Representations with Pre-Finetuning (2021), Armen Aghajanyan et al.

https://arxiv.org/abs/2101.11038

[00:14:30] Dissociating language and thought in large language models (2023), Kyle Mahowald et al.

https://arxiv.org/abs/2301.06627

[00:16:05] The Birth of Self-Supervised Learning: A Supervised Theory, Randall Balestriero et al.

https://openreview.net/forum?id=NhYAjAAdQT

[00:21:25] VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Adrien Bardes, Jean Ponce, Yann LeCun

https://arxiv.org/abs/2105.04906

[00:25:20] No Location Left Behind: Measuring and Improving the Fairness of Implicit Representations for Earth Data (2025), Daniel Cai, Randall Balestriero, et al.

https://arxiv.org/abs/2502.06831

[00:33:45] Mark Ibrahim et al.'s work on geographic bias in computer vision datasets, Mark Ibrahim

https://arxiv.org/pdf/2304.12210

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

90 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

479 Listeners

The a16z Show by Andreessen Horowitz

The a16z Show

1,095 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

302 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

333 Listeners

Y Combinator Startup Podcast by Y Combinator

Y Combinator Startup Podcast

228 Listeners

Practical AI by Practical AI LLC

Practical AI

204 Listeners

ManifoldOne by Steve Hsu

ManifoldOne

95 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

207 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

517 Listeners

Big Technology Podcast by Alex Kantrowitz

Big Technology Podcast

501 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

130 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

228 Listeners

AI + a16z by a16z

AI + a16z

36 Listeners

Training Data by Sequoia Capital

Training Data

40 Listeners

Complex Systems with Patrick McKenzie (patio11) by Patrick McKenzie

Complex Systems with Patrick McKenzie (patio11)

134 Listeners