
Sign up to save your podcasts
Or
Interleukin-2 therapies have been seen as promising ways to treat solid tumors, but they have proven challenging because of the ability of IL-2 to both activate and suppress the immune system. Their effectiveness has been limited because of potentially toxic side effects, which have included vascular leak syndrome and pulmonary edema. Aulos Biosciences believes the AI-based approach to computational drug design used for its lead experimental therapy allows it to unlock the power of IL-2 without triggering the concerning side effects of existing therapies. We spoke to Aron Knickerbocker, president and CEO of Aulos Bioscience, about the potential for IL-2 therapies to treat solid tumors, the limits of today's IL-2 therapies, and the AI-based design behind its experimental IL-2 therapy in development.
3.7
3939 ratings
Interleukin-2 therapies have been seen as promising ways to treat solid tumors, but they have proven challenging because of the ability of IL-2 to both activate and suppress the immune system. Their effectiveness has been limited because of potentially toxic side effects, which have included vascular leak syndrome and pulmonary edema. Aulos Biosciences believes the AI-based approach to computational drug design used for its lead experimental therapy allows it to unlock the power of IL-2 without triggering the concerning side effects of existing therapies. We spoke to Aron Knickerbocker, president and CEO of Aulos Bioscience, about the potential for IL-2 therapies to treat solid tumors, the limits of today's IL-2 therapies, and the AI-based design behind its experimental IL-2 therapy in development.
10,406 Listeners
122 Listeners
1,924 Listeners
9,189 Listeners
318 Listeners
6,751 Listeners
59 Listeners
88 Listeners
29 Listeners
147 Listeners
108 Listeners
15,237 Listeners
10 Listeners
51 Listeners
36 Listeners