Machine Learning Street Talk (MLST)

Reasoning, Robustness, and Human Feedback in AI - Max Bartolo (Cohere)


Listen Later

Dr. Max Bartolo from Cohere discusses machine learning model development, evaluation, and robustness. Key topics include model reasoning, the DynaBench platform for dynamic benchmarking, data-centric AI development, model training challenges, and the limitations of human feedback mechanisms. The conversation also covers technical aspects like influence functions, model quantization, and the PRISM project.


Max Bartolo (Cohere):

https://www.maxbartolo.com/

https://cohere.com/command


TRANSCRIPT:

https://www.dropbox.com/scl/fi/vujxscaffw37pqgb6hpie/MAXB.pdf?rlkey=0oqjxs5u49eqa2m7uaol64lbw&dl=0


TOC:

1. Model Reasoning and Verification

[00:00:00] 1.1 Model Consistency and Reasoning Verification

[00:03:25] 1.2 Influence Functions and Distributed Knowledge Analysis

[00:10:28] 1.3 AI Application Development and Model Deployment

[00:14:24] 1.4 AI Alignment and Human Feedback Limitations


2. Evaluation and Bias Assessment

[00:20:15] 2.1 Human Evaluation Challenges and Factuality Assessment

[00:27:15] 2.2 Cultural and Demographic Influences on Model Behavior

[00:32:43] 2.3 Adversarial Examples and Model Robustness


3. Benchmarking Systems and Methods

[00:41:54] 3.1 DynaBench and Dynamic Benchmarking Approaches

[00:50:02] 3.2 Benchmarking Challenges and Alternative Metrics

[00:50:33] 3.3 Evolution of Model Benchmarking Methods

[00:51:15] 3.4 Hierarchical Capability Testing Framework

[00:52:35] 3.5 Benchmark Platforms and Tools


4. Model Architecture and Performance

[00:55:15] 4.1 Cohere's Model Development Process

[01:00:26] 4.2 Model Quantization and Performance Evaluation

[01:05:18] 4.3 Reasoning Capabilities and Benchmark Standards

[01:08:27] 4.4 Training Progression and Technical Challenges


5. Future Directions and Challenges

[01:13:48] 5.1 Context Window Evolution and Trade-offs

[01:22:47] 5.2 Enterprise Applications and Future Challenges


REFS:

[00:03:10] Research at Cohere with Laura Ruis et al., Max Bartolo, Laura Ruis et al.

https://cohere.com/research/papers/procedural-knowledge-in-pretraining-drives-reasoning-in-large-language-models-2024-11-20

[00:04:15] Influence functions in machine learning, Koh & Liang

https://arxiv.org/abs/1703.04730

[00:08:05] Studying Large Language Model Generalization with Influence Functions, Roger Grosse et al.

https://storage.prod.researchhub.com/uploads/papers/2023/08/08/2308.03296.pdf

[00:11:10] The LLM ARChitect: Solving ARC-AGI Is A Matter of Perspective, Daniel Franzen, Jan Disselhoff, and David Hartmann

https://github.com/da-fr/arc-prize-2024/blob/main/the_architects.pdf

[00:12:10] Hugging Face model repo for C4AI Command A, Cohere and Cohere For AI

https://huggingface.co/CohereForAI/c4ai-command-a-03-2025

[00:13:30] OpenInterpreter

https://github.com/KillianLucas/open-interpreter

[00:16:15] Human Feedback is not Gold Standard, Tom Hosking, Max Bartolo, Phil Blunsom

https://arxiv.org/abs/2309.16349

[00:27:15] The PRISM Alignment Dataset, Hannah Kirk et al.

https://arxiv.org/abs/2404.16019

[00:32:50] How adversarial examples arise, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, Aleksander Madry

https://arxiv.org/abs/1905.02175

[00:43:00] DynaBench platform paper, Douwe Kiela et al.

https://aclanthology.org/2021.naacl-main.324.pdf

[00:50:15] Sara Hooker's work on compute limitations, Sara Hooker

https://arxiv.org/html/2407.05694v1

[00:53:25] DataPerf: Community-led benchmark suite, Mazumder et al.

https://arxiv.org/abs/2207.10062

[01:04:35] DROP, Dheeru Dua et al.

https://arxiv.org/abs/1903.00161

[01:07:05] GSM8k, Cobbe et al.

https://paperswithcode.com/sota/arithmetic-reasoning-on-gsm8k

[01:09:30] ARC, François Chollet

https://github.com/fchollet/ARC-AGI

[01:15:50] Command A, Cohere

https://cohere.com/blog/command-a

[01:22:55] Enterprise search using LLMs, Cohere

https://cohere.com/blog/commonly-asked-questions-about-search-from-coheres-enterprise-customers

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

83 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

475 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

439 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

295 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

312 Listeners

Practical AI by Practical AI LLC

Practical AI

196 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

187 Listeners

Last Week in AI by Skynet Today

Last Week in AI

271 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

320 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

106 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

178 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

70 Listeners

"Upstream" with Erik Torenberg by Erik Torenberg

"Upstream" with Erik Torenberg

68 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

397 Listeners

AI + a16z by a16z

AI + a16z

26 Listeners

Training Data by Sequoia Capital

Training Data

31 Listeners